LICHEN DIVERSITY AND ITS DISTRIBUTION PATTERN IN TROPICAL DRY EVERGREEN FOREST OF GUINDY NATIONAL PARK (GNP), CHENNAI

P. BALAJI AND G.N. HARIHARAN

M.S. Swaminathan Research Foundation, Chennai (Tamil Nadu).

Introduction

Conservation agencies are interested in promoting and maintaining biodiversity, based on rapidly measurable forest characteristics for effective implementation of protective measures (Neitlich and McCune, 1997). Large-scale data on lichens and environmental variables that determine their distribution are an integral component of many global conservation programs since lichens are very sensitive and widely accepted as indicators of air quality, biodiversity and climate change (McCune et al., 1997); and such data are lacking from the Indian Tropics despite its megadiversity and escalating threats. Lichens are vital components of the ecosystem serving as substrates, shelter, food, nutrient cyclers, succession etc. (Gradstein, 1992). Hence the present study aims at a detailed analysis of lichen diversity and distribution, from a Tropical Dry Evergreen Forest in the coastal plain at the Guindy National Park (GNP), Chennai that is isolated due to the city development.

Study area

In 1910 GNP was established as a Reserve Forest, lies between 13° 0' 4" - 13° 1'N latitude to 80° 14' 3" - 80° 14' 4"E longitude, covers an area of 270 ha within

Chennai. The topography is classified as Eastern Coastal Plain, with Coastal alluvium derived soils with a sub humid climate (Sehgal *et al.*, 1990). GNP receives ≈ 20 cm rain from the North-East monsoon during October-December, temperature ranges from 21° C (December-January) - 42° C (April-May).

GNP once covering an area of 500 ha has currently shrunk to 270 ha. The vegetation, known as the remnants of the Tropical Dry Evergreen Forest of the Coromandel Coast by Champion and Seth, 1963 reclassified as the Albizia amara ·Boiv. community (Meher-Homji, 1973). The GNP contains 350 species of flowering plants (Santharam, 1992) with alien aggressive Acacia auriculiformis, Prosopis juliflora, Antigonon leptopus, and a large number of invertebrates and vertebrates. The sizable populations of blackbuck (Antilope cervicapra), and spotted deer (Axis axis) within GNP heavily depend on the vegetation (Shankar Raman et al., 1995).

Material and Methods

Sites were selected in uniform stands and 50m x 20m = 1000m² quadrats (12 Nos) were laid within GNP. Each quadrat was subdivided in to 10m x 20m plots for convenient data collection. In each plot the total no. of trees, shrubs and lianas (gbh ≥ 3 cm) were noted. All the stems were surveyed for lichens. On the basis of presence or absence of lichens up to the breast height, stems were classified as lichen bearing and non-lichen bearing. Tree data included species, height using graduated perches, girth at breast height and bark pH.

Lichens on the phorophytes were recorded at the breast height level or below using a 20cm x 20cm = 400cm² grid with 10 vertical and 10 horizontal wires. Data were collected on species diversity in an unit area, its frequency and abundance under each grid on the graph sheet and were coded with segments, tree number, lichen number and all the collected samples were also coded accordingly and binomials were identified.

The rarity and dominance were determined by the frequency of lichen species. The growth forms of all the recorded species were noted. The photobionts of all the lichens were isolated and identified up to genus level (Tschermak-Woess, 1989).

Data analysis

Field data were recorded in customised Microsoft Excel data sheets. For species diversity, Shannon and Simpson indices (Magurran, 1988) were calculated. Species-area curves were plotted using the program EstimateS 5 R.K. Colwell http:// (version viceroy.eeb.uconn.edu/estimates), based on mean species accumulation curve after 100 times randomization of sample order. Regression models were tested using built in Data analysis tool kits. Clustering is a hierarchical agglomerative method for identifying groups of samples in a multivariate data set using species abundances measured on sample plots, to reveal compositionally similar species assemblages or communities has expanded rapidly and an integral component in recent similar lichen studies (Bruteig, 1993; Neitlich and McCune, 1997; Wolseley and Pryor, 1999). The Principal Co-Ordinate (PCO) analysis is used to arrange samples by similarity (Euclidean distance) based on agglomerative methods of ordination, and we have used SPSS (ver. 9) to carry out this analysis.

Binomials were identified using Awasthi (1989, 1991); Singh and Sinha (1994) and the collected specimens were deposited at the M.S. Swaminathan Research Foundation, Chennai.

Results and Discussion

Lichen diversity of Guindy National Park: A total of 31 lichens (Table 1) were recorded within GNP under 26 genera, 19 families and 9 Orders, from 219 phorophytes in a total sample of 264 out of which 235 trees, 27 shrubs and 2 lianas of ≥3 cm gbh, in the twelve 0.1 ha quadrats (Table 2), reflects a higher diversity/unit area, 2.58 species/0.1 ha, compared to a similar site at Southeastern Australia (open dry sclerophyll forest with a grassy understorey with 69 species with a diversity of 1.91 species/0.1ha (Pharo and Beattie, 1997).

In GNP, Order Lecanorales dominate with 14 species followed by Arthoniales (7). Five Orders have single species each. Out of 19 families of lichens, the largest family being Physciaceae with 6 species and 10 lichen families possess single species each.

Table 1 Lichens of Guindy National Park, Chennai

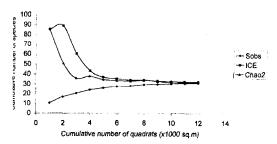
Species	Family	Order
Anthracoathecium ochrotropum Hampe ex A. Massal	Pyrenulaceae	Pyrenulales
Arthonia tumidula (Ach.) Ach.	Arthoniaceae	Arthoniales
Arthonia simplicascens Nyl.	Arthoniaceae	Arthoniales
Arthopyrenia alboatra (Krempelh.) Mull. Arg.	Arthopyreniaceae	Dothediales
Bacidia medialis (Tuck. In Nyl.) Zahlbr.	Bacidiaceae	Lecanorales
Bacidia phaeolomoides (Müll. Arg.) Zahlbr.	Bacidiaceae	Lecanorales
Buellia disciformis (Fr.) Mudd.	Physciaceae	Lecanorales
Catillaria intermixta (Nyl.) Arn.	Catillariaceae	Lecanorales
Catillaria sp.	Catillariaceae	Lecanorales
Chrysothrix candelaris (L.) Laundon	Chrysothricaceae	Arthoniales
Dirinaria consimilis (Stirton) Awas.	Physciaceae	Lecanorales
Dirinaria papillulifera (Nyl.) Awas.	Physciaceae	Lecanorales
Enterographa multiseptata R. Sant.	Roccellaceae	Arthoniales
Enterographa sp.	Roccellaceae	Arthoniales
Graphis scripta (L.) Ach.	Graphidaceae	Ostropales
Gyrostomum scyphuliferum (Ach.) Nyl.	Graphidaceae	Ostropales
Heterodermia diademata (Taylor) Awas.	Physciaceae	Lecanorales
Lecanora allophana (Ach) Roh.	Lecanoraceae	Lecanorales
Lecidea sp.	Lecideaceae	Lecanorales
Opegrapha leptoterodes Nyl.	Roccellaceae	Arthoniales
Parmotrema saccatilobum Nyl.	Parmeliaceae	Lecanorales
Phylliscum testudineum Nyl. Ex Mass	Lichinaceae	Lichinales
Physcia aipolia (Ehrh. In Humb.) Furnr	Physciaceae	Lecanorales
Porina interestes (Nyl.) Harm.	Trichotheliaceae	Trichotheliales
Pseudopyrenula subvelata (Nyl.) Müll. Arg.	Pyrenulaceae	Pyrenulales
Pyxine sp.	Physciaceae	Lecanorales
Roccella montagnei Bel. Emend. Awas.	Opegraphaceae	Arthonials
Strigula elegans (Fèe) Müll. Arg.	Strigulaceae	Ins. Sed., L
Tapellaria sp.	Ectolechiaceae	Lecanorales
Trypethelium eluteriae Spreng.	Trypetheliaceae	Pyrenulales
Verrucaria sp.	Verrucariaceae	Verrucariales

Comparable studies are not available from similar habitats within India. Compared to adjoining locations in

Chennai, GNP showed a higher species richness. The sites, Madras Christian College harbours 16 species, Indian

Table 2

Results of diversity inventory of lichens in the twelve 0.1 ha quadrats of Tropical Dry


Evergreen Forest (GNP), Chennai.

Variable	
Species Richness	31
Range of species/ 0.1 ha	1-22
No. of genera	26
Number of families	19
Number of orders	9
No. of substrates	3
No. of host species	28
Diversity indices:	
Shannon (H')	4.298
Simpson (D')	0.934
Evenness (J')	0.903

Institute of Technology with 17, Indira Gandhi Centre for Atomic Research with 16 and Vandalur with 5. The GNP harbours 59.6% of the total diversity recorded from this region. The high lichen diversity status of GNP compared to other locations can be attributed to the availability of number of lichen host trees (more corticolous species) and, the positive correlation between lichen diversity and host tree diversity providing ample proof to protect this habitat. Moreover the site is insular and away from the polluting sources; since lichens were found to be highly sensitive to air pollution and habitat modifications (Richardson, 1992).

Species-area curve: Species accumulation curves (Fig. 1), both the observed and the estimated, attained an asymptote at various scales. The best satisfied estimators (incidence-based coverage estimators (ICE and Chao 2) (Chazdon et al., 1998) were plotted against the area sampled. These two estimators reached a stable value of 31 in the 10,000 m², and

Fig. 1

Species-area curve for lichens in twelve 0.1 ha quadrats in Tropical Dry Evergreen Forest at Guindy National Park, Chennai, showing the observed (Sobs) and the estimated incidence-based coverage estimator (ICE) and Chao 2 curves

the Species observed (Sobs) curve stabilized at the 9000 m² indicating that lichens were sparsely distributed within GNP. Similar lichen distribution patterns were also observed by Montfoort and Ek (1990) and Pharo and Beattie (1997).

Distribution of Lichen species (Table 3): Graphis scripta occur in 11 quadrats. Three species were distributed in 9 quadrats and species Arthopyrenia alboatra, Parmotrema saccatilobum, Strigula sp., Tapellaria and Verrucaria sps occurred in one quadrat.

Only 219 individuals (comprising 28 species) possess lichens out of 264 trees/shrubs/lianas (comprising 52 tree species) surveyed. Lichens species richness/individual phorophyte (≥3 cm gbh) ranged from 1-7 with 8 phorophytes support single lichen species each. Cassia siamea supported 14 lichen species. The mean species diversity/host is 4.37. Bacidia phaeolomoides (44 colonies) occurred on 40.74% and B. medialis and Graphis scripta (42 colonies) on 37.03% phorophytes, 8 lichen species (< 4%) occur on a phorophyte (Table 4).

Table 3 Percentage frequency, Relative density and number of host species on which they occurred in the Tropical Dry Evergreen Forest in Guindy National Park, Chennai.

Lichens	% frequency	Relative density (%)	No. of Host species
Anthracoathecium ochrotropum	21.43	2.34	3
Arthonia simplicascens	21.43	3.13	1
Arthonia tumidula	64.29	2.34	8
Arthopyrenia alboatra	7.14	0.39	1
Bacidia medialis	64.29	4.69	10
$Bacidia\ phaeolomoides$	64.29	8.99	11
Buellia disciformis	42.86	2.34	3
Catillaria intermixta	21.43	2.73	2
Catillaria sp.	21.43	3.13	3
Chrysothrix candelaris	21.43	3.91	1
Dirinaria consimilis	42.86	3.13	2
Dirinaria papillulifera	42.86	3.13	2
Enterographa multiseptata	42.86	2.34	4
Enterographa sp.	21.43	2.34	6
Graphis scripta	78.57	9.38	10
Gyrostomum scyphuliferum	21.43	3.13	4
Heterodermia diademata	42.86	5.08	5
Lecanora allophana	42.86	3.52	6
Lecidea sp.	42.86	5.08	4
Opegrapha leptoterodes	21.43	2.73	3
Parmotrema saccatilobum	7.14	0.39	1
Phylliscum testudineum	21.43	0.39	1
Physcia aipolia	42.86	5.47	7
Porina interestes	42.86	7.03	6
Pseudopyrenula subvelata	21.43	3.13	1
Pyxine sp.	42.86	2.34	2
Roccella montagnei	21.43	3.52	2
Strigula elegans	7.14	0.78	1
Tapellaria sp.	7.14	0.39	1
Trypethelium eluteriae	21.43	2.34	5
Verrucaria sp.	7.14	0.39	1

Table 4

Lichen diversity on the hosts found in GNP

Host / Substratum	Lichens	No. of Lichen sp.
1	2	3
Acacia auriculiformis A. Cunn. Ex Benth	Bacidia phaeolomoides, Graphis scripta and Lecanora allophana	3
Acacia planiferons, W. & A.	Physcia aipolia	1
Annona squamosa L.	Bacidia medialis, Heterodermia diademata	2
Atalantia monophylla (L.) Corr. Serr.	Porina interestes	1
Azadirachta indica Adr. Juss.	$Opegrapha\ leptoterodes$	1
Borassus flabellifer L.	Bacidia phaeolomoides, Dirinaria consimilis, Enterographa multiseptata, Roccella montagnei	4
Carissa spinarum L.	Heterodermia diademata	1
Cassia fistula L.	Arthonia tumidula, Arthopyrenia alboatra*, Bacidia medialis, Bacidia phaeolomoides, Enterographa sp. Graphis scripta, Gyrostomum scyphuliferum, Heterodermia diademata, Lecidea, Physcia aipolia, Pyxine sp.	11
Cassia siamea Lam.	Anthroacothecium ochrotropum, Arthonia tumidula, Bacidia phaeolomoides, Catillaria Sp. Chrysothrix candelairs*, Dirinaria consimilis, Enterographa multiseptata, Enterographa sp. Graphis scripta, Gyrostomum scyphuliferum, Lecanora allophana, Opegrapha, Physcia, Porina interestes	14
Cassia roxburghii DC.	Opegrapha leptoterodes	1
Clausena dentata (Willd.) Roemer	Arthonia tumidula, Bacidia medialis, Enterographa multiseptata, Enterographa sp. Graphis scripta, Porina interestes, Pseudopyrenula subvelata*	7
Ficus benghalensis L.	Arthonia simplicascens*, Bacidia phaeolomoides	2
Gymnema sylvestre (Retz.) R. Br. Ex Roemer & Schultes	Bacidia medialis	1

Contd...

1	2	3
Lannea coromandelica (Houtt.) Merr.	Arthonia tumidula, Bacidia phaeolomoides, Dirinaria papillulifera, Enterographa multiseptata, Graphis scripta, Lecanora allophana, Roccella montagnei	7
Lianas (unknown species)	Anthroacothecium ochrotropum, Catillaria sp., Enterographa sp. Graphis scripta, Gyrostomum, Lecanora, Trypethelium eluteriae	7
Madhuca longifolia (Koenig) Macbr.	Bacidia phaeolomoides, Catillaria sp., Graphis scripta, Trypethelium eluteriae	4
Mangifera indica Linn.	Bacidia medialis, Catillaria intermixta, Strigula elegans*	2
Gmelina asiatica L.	Bacidia medialis, Lecidea, Physcia aipolia	3
Mimusops elengi Linn.	Anthracoathecium ochrotropum, Enterographa sp. Porina interestes	3
Morinda tinctorium Roxb. = Morinda coreia Buch Ham.	Bacidia medialis, Bacidia phaeolomoides, Graphis scripta, Gyrostomum, Lecanora allophana	5
Phoenix sylvestris (L.) Roxb.	Buellia disciformis, Tapellaria sp.*	2
Polyalthia longifolia (Sonn.) Thwaites	Lecidea sp.	1
Pongamia pinnata Pierre	Arthonia tumidula, Bacidia medialis, Bacidia phaeolomoides, Buellia disciformis, Graphis scripta, Lecanora, Lecidea sp., Physcia aipolia, Trypethelium	9
Pterocarpus santalinus L. f.	Sterile crust	1
Randia dumetorum (Retz.) Poiret	Arthonia tumidula, Buellia disciformis, Heterodermia diademata, Physcia aipolia, Pyxine sp. & Trypethelium eluteriae	6
Swietenia mahogani (L.) Jacq.	Arthonia tumidula, Bacidia medialis, Bacidia phaeolomoides, Enterographa sp. & Porina interestes	5
Syzygium cumini (L.) skeels	Arthonia tumidula, Bacidia medialis, Bacidia phaeolomoides, Graphis scripta, Heterodermia diademata, parmotrema saccatilobum, Physcia aipolia	7
Zizyphus oenophlia (L.)	Catillaria intermixta, Dirinaria papillulifera, Trypethelium eluteriae	3
On Bricks/Stones	Phylliscum testudineum, Verrucaria	2

Note: * Specific to a particular host tree

In terms of abundance, the individuals of the porophyte Atlantia monophylla possesses Porina interestes throughout the trunk, whereas Chrysothrix candelaris on Borassus flabellifer and Arthopyrenia alboatra on Cassia fistula were with a cover area less than 0.5 cm^2 .

Dominance and rarity: The rarity and dominance of lichens were determined by the frequency (Table 5). They were classified as: very rare, rare, common, dominant and predominant, 35.5% species found to be very rare to rare, 29% common, 19.5% dominant and 16% predominant. Bacidia phaeolomoides, Bacidia medialis, Graphis scripta, Heterodermia diademata

Table 5

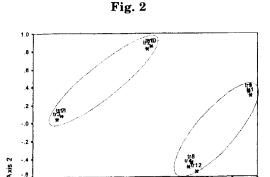
Dominance and rarity among lichens of GNP

Colony Class	Categories	Species
1 to 5	Very rare	5
6 to 20	Rare	6
21 to 50	Common	9
51 to 100	Dominant	6
> 101	Predominant	5
	Total	31

and Porina interestes were predominant and Arthopyrenia alboatra, Parmotrema saccatilobum, Strigula elegans, Tapellaria and Verrucaria spp. were very rare lichens.

Table 6 reveals the increase of lichen species with decreasing trunk size; 39.34% of lichens on 3-10 cm followed by 37.70% on 11-20 cm girth classes. Bacidia phaeolomoides occurred on all the girth classes; Bacidia medialis, Arthonia tumidula, Graphis scripta, Lecanora allophana, and Trypethelium eluteriae on girth classes ranges from 3 to 30cm. Buellia disciformis and Pseudopyrenula subvelata specific to 3-10 cm; Arthopyrenia alboatra and Parmotrema saccatilobum specific to 11-20cm; Arthonia simplicascens specific to 51-60 cm.

Ordination of samples: Principal Co-Ordinate analysis (PCO) provides a convenient reference space within which to explore natural succession or community changes wrought by disturbances or human actions. If the distance between two points in an ordination space indicates their ecological dissimilarity, then movement within this space indicates compositional change. The PCO analysis

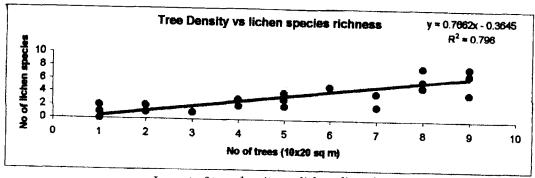

Table 6

Lichen species richness, colonies (%), no. of individual host trees, and no. of host species on six tree girth classes in the Tropical Dry Evergreen Forest at GNP, Chennai.

Girth Class (cm)	No. of lichen species	No. of Colonies (%)	No. of individual host trees	No. of Host species
3-10	24	27.77	85	11
11-20	23	50.00	93	13
21-30	10	17.22	37	8
31-40	2	1.11	2	2
41-50	0	0.00	Nil	Nil
51-60	2	3.88	2	1

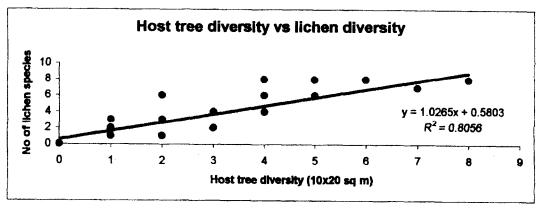
of lichen distribution from quadrats brought out four distinguishable clusters (Fig. 2), indicating the species assemblages. The distance between two clusters is based on similarity between them that is derived out of shared species.

The regression model between the tree density (x) and the lichen diversity (y), reveal a highly significant correlation ($R^2 = 0.796$, p<0.05%) with an estimator y = 0.7662x - 0.364 (Fig. 3), which is useful to determine the lichen diversity status of sites within GNP with varying density of vegetation.


Princical co-ordinate analysis of lichen data of GNP

The regression model between the host tree diversity (x) and the lichen diversity (y), reveal a highly significant correlation $(R^2 = 0.805 \text{ p} < 0.05\%)$ with an estimator y = 1.0265x + 0.5803 (Fig. 4). The soil, climate and topography of all four vegetation zones remain the same but vary in vegetation structure and microclimate. The impacts of vegetation structure were brought out by the agglomerative ordination method and regression analysis indicating the rapidly measurable site characteristics such as tree density and host tree diversity to assess the lichen diversity (Table 7).

Vegetation zones within GNP: Table 7 gives the vegetation zones in GNP and their characteristic features along with lichen diversity.


Lichen growth form distribution: Macrolichens dominate similar sites in Coastal Brazil (Marcelli, 1991) and Southeastern Australia (Pharo and Beattie, 1997) while 75% of lichens are crustose in GNP (Fig. 5), which can be attributed to the adaptation of these species to withstand long dry seasons (>6 months).

Impact of tree density on lichen diversity

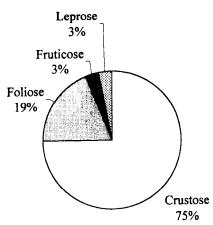
Fig. 4

Impact of host tree diversity on lichen diversity

Table 7

The vegetation zones and their characteristic features along with the lichen diversity.

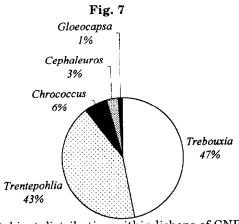
Vege- tation zone	Structure of vegetation	Tree density/ 100 m ²	Total No. of trees	No. of Lichen bearing trees	Canopy over- lapping	dominant	Pre- dominant lichen species	No. of Lichen species recorded	No. of colonies (%)
Veg-1	Thick	22.00	88	74	≥2	3, 6 & 7	B, E, F H & J	21	35.55
Veg-2	Partially open and thick	12.35	73	61	≤2	1,2 & 8	A, I & K	10	29.44
Veg-3	Open and thin vegetation	9.70	63	52	<2	4, 10 & 11	D & L	4	25.55
Veg-4	Thorny and shrubby	4.00	40	32	0-1	12,7 & 13	C, G & M	I 13	9.44
	Total		264	219					100


A - Bacidia medialis, B - Bacidia phaeolomoides, C - Catillaria intermixta, D - Dirinaria consimilis, E - Graphis scripta, F - Gyrostomum scyphuliferum, G - Heterodermia diademata, H - Lecanora allophana, I - Physcia aipolia, J - Porina interestes, K - Pseudopyrenula subvelata, L - Roccella montagnei, M - Trypethelium eleutriae

^{1 -} Acacia auriculiformis, 2 - Acacia planiferons, 3 - Atlantia monophylla, 4 - Borassus flabellifer, 5 - Carissa spinarum, 6 - Cassia fistula, 7 - Cassia siamea, 8 - Clausena dentata, 9 - Gmelina asiatica, 10 - Phoenix sylvestris, 11 - Pterocarpus santalinus, 12 - Randia dumetorum, 13 - Ziziphus oenophilia

Table 8 Lichen species substratum and their photobiont in GNP, Chennai

Species	Substratum	Photobiont
Anthracoathecium ochrotropum Hampe ex A. Massal	Bark	Trentepohlia
Arthonia tumidula (Ach.) Ach.	Bark	Trente pohlia
Arthonia simplicascens Nyl.	Bark	Trente pohlia
Arthopyrenia alboatra (Krempelh.) Mull. Arg.	Bark	${\it Trentepohlia}$
Bacidia medialis (Tuck. In Nyl.) Zahlbr.	Bark, twig	Trebouxia
Bacidia phaeolomoides (Müll. Arg.) Zahlbr.	Bark, twig	Trebouxia
Buellia disciformis (Fr.) Mudd.	Bark	Trebouxia
Catillaria intermixta (Nyl.) Arn.	Bark	Trebouxia
Catillaria sp.	Bark, twig	Trebouxia
Chrysothrix candelaris (L.) Laundon	Bark	Trebouxia
Dirinaria consimilis (Stirton) Awas.	Bark	Trebouxia
Dirinaria papillulifera (Nyl.) Awas.	Bark	Trebouxia
Enterographa multiseptata R. Sant.	Bark	Trente pohlia
Enterographa sp.	Bark	Trente pohlia
Graphis scripta (L.) Ach.	Bark, twig	Trente pohlia
Gyrostomum scyphuliferum (Ach.) Nyl.	Bark	Trente pohlia
Heterodermia diademata (Taylor) Awas.	Bark, twig	Trebouxia
Lecanora allophana (Ach) Röh.	Bark, twig	Trebouxia
Lecidea sp.	Bark, twig	Trebouxia
Opegrapha leptoterodes Nyl.	Bark	Trente pohlia
Parmotrema saccatilobum Nyl.	Bark	Trebouxia
Phylliscum testudineum Nyl. Ex Mass	Brick	Gleocapsa
Physcia aipolia (Ehrh. In Humb.) Furnr	Bark	Trebouxia
Porina interestes (Nyl.) Harm.	Bark	Trente pohlia
Pseudopyrenula subvelata (Nyl.) Müll. Arg.	Bark, twig	Trente pohlia
Pyxine sp.	Bark	Trebouxia
Roccella montagnei Bel. Emend. Awas.	Bark	Trente pohlia
Strigula elegans (Fèe) Müll. Arg.	Leaf	Cephaleuros
Tapellaria sp.	Leaf	Trebouxia
Trypethelium eluteriae Spreng.	Bark	Trente pohlia
Verrucaria sp.	Stone	Trebouxia



Growth form distribution of lichens within GNP

Fig. 6

Substrate preference of lichens of GNP

Photobiont distribution within lichens of GNP

Substrate preference: Fig. 6 indicates the substrate preference of lichens within GNP. The trunks (59% of species) were found to be the most preferred habitats. The presence of Strigula elegans (on the leaves of Mangifera indica) indicate dry conditions, due to their subcuticular growth, an adaptation against water loss (Lücking, 2000). Tapellaria sp. (on fonds of Phoenix sylvestris) is indicative of coastal, (secondary) forest type, seasonality and microclimate (Lücking, 1997). These two species were confined to GNP with a narrow distribution.

Photobiont distribution within lichens of Guindy National Park: The lichens with photobiont (Fig. 7) Trebouxia (Chlorophyceae, Chlorococcales - 46%) dominate Trentepohliafollowed by (Trentepohliaceae, Trentepohliales - 42%). The sensitivity of the photobiont to temperature and drought is a critical factor for the survival of lichens. The photobiont Trebouxia is frequent in dry and open and Trentepohlia in moisture and closed plots, which confirms with similar species distribution observed by Wolseley and Aguirre-Hudson, 1997.

Conclusions

This study strengthens the argument of Upreti (1995) for establishing Biosphere Reserve etc. by harbouring 59.6% of the total lichen diversity recorded from this region with ecologically sensitive folicolous and narrowly distributed species and serve as a refuge, providing compelling evidence to assign a high conservation priority to this site. It also provides information on rapidly measurable forest characteristics to develop implementable conservation strategies and a baseline for further research on monitoring and conservation.

Acknowledgements

The authors thank Prof. M.S. Swaminathan, Chairman and Prof. P.C. Kesavan Executive Director, MSSRF, for providing necessary facilities and Department of Biotechnology, Government of India for financial support. Thanks are also due to Mr. Sukdev IFS, The Chief Wildlife Warden, Tamil Nadu Forest Department for granting site permission, Mr. Kamaraj, Biologist, GNP and Mr. Bharath Prithiviraj, MSSRF for their help during field and lab work.

SUMMARY

Quantitative ecological data suggested the impact of key site characters on lichens within the Tropical Dry Evergreen Forest at GNP. Twelve quadrats (each of 0.1 ha) were inventoried for lichen species diversity and their relationship with prominent site characters such as vegetation structure, tree density and host tree diversity were analyzed at GNP, Chennai. A total no of 31 species of lichens were found under 26 genera in 19 families in 9 Fungal Orders, recorded from 219 individuals of phorophytes in a total sample of 264 out of which 235 trees, 27 shrubs and 2 lianas of ≥3 cm gbh. Strongest correlation emerged between tree density and host tree diversity on lichen distribution. Species like Arthopyrenia alboatra, Parmotrema saccatilobum, Strigula elegans, Tapellaria sp. and Verrucaria sp were found to be narrowly distributed in the park and specific to a single host.

गुइंडी राष्ट्रीय उपवन, चेन्नई के उष्ण शुष्क सदाहरित वन की कवाप्य विविधता और उनके वितरण की सज्जा पी॰ बालाजी व जी॰एन हरिहरन् सारांश

मात्रात्मक दृष्टि से लिए पारिस्थिकीय आंकड़े सुझाते हैं कि इस स्थल की मुख्य विशयताओं का गुंइडी राष्ट्रीय उपवन के उष्णा शुष्क सदाहरित वन में पाए जाने वाले कवाप्यां पर प्रभाव पड़ा है । गृइंडी राष्ट्रीय उपवन, चेन्नई के कव्यापों की जाति विविधता का पता लगाने के लिए बारह चतुष्कोणक (प्रत्येक 0.1 हेक्टे॰ का रखकर) बनाए गए, और मुख्य स्थल विशेषताओं जैसे वनस्पति संरचना, वृक्ष सघनता और पोषी वृक्ष विविधता के साथ उनके सम्बन्ध का विश्लेषण किया गया । 9 कवक गणों के 19 क्लों में आने वाली 26 प्रजातियों की कुल मिलाकर 31 जातियों के कवाप्य कुल 264 नमूनों में से 219 फोरोफायटों से आलेखित किए गए जिसमें से 235 वृक्ष, 27 क्ष्प और 2> सेमी वक्षोच्चता पर परिधि वाली कष्ठारोहियों के थे । वृक्ष धनत्व और पोषी वृक्षों की विविधतां का कवाप्य वितरण के साथ भारी सहसंबंध निकला । आर्थोपायरेनिया एल्बोएटा, पार्मोट्रमा, सैक्केटिलोबम, स्टायगुला एलेगेंस, टेप्पेलेरिया की जाति और वेरूकेरिया की जाति जैसी जातियां इस उपवन में बहत कम वितरित होती पाई गई और वे एक ही पोषी के साथ विशिष्ट रहती मिली ।

References

- Awasthi, D.D. (1989). A Key to the macrolichens of India and Nepal. J. Hattori Bot. Lab., 65: 207-
- Awasthi, D.D. (1991). A Key to the microlichens of India, Nepal and Sri Lanka. Bibliotheca Lichenologica, 40: 1-337.
- Bruteig, I.E. (1993). Large-scale survey of the distribution and ecology of common epiphytic lichens on Pinus sylvestris in Norway. Ann. Bot. Fennici, 30: 161-179.
- Champion, H. G. and S.K. Seth (1963). A Revised Survey of the Forest Types of India. Manager of Publications, Delhi.

- Chazdon, R.L., R.K. Colwell, J.S. Denslow and M.R. Guariguata (1998). Statistical methods for estimating species-richness of woody regeneration in primary and secondary forests of Northeastern Costa Rica. Forest Biodiversity Research: Monitoring and modeling-Conceptual Background and Old World Case Studies (Dallmeier, F. and J.A. Comiskey, eds.). Parthernon Publishing, Paris. pp. 285-309.
- Gradstein, S. R. (1992). The vanishing tropical rain forest as an environment for bryophytes and lichens. Bryophytes and Lichens in a changing Environment (Bates, J.W. and M.F. Andrew, eds.). Clarendon Press, Oxford. pp. 235-258
- Lücking, R. (1997). The use of foliicolous lichens as bioindicators in the tropics, with special reference to the microclimate. *Abstracta Botanica*, 21: 99-116.
- Lücking, R. (2000). Key to the Foliicolous lichens and their lichenicolous fungi Part 1. Foliicolous lichens. Internet version 31st Oct.
- Magurran, A. E. (1988). Ecological diversity and its measurements. Princeton University Press. pp.1-179.
- Marcelli, M.P. (1991). Aspects of the foliose lichen flora of the southern-central coast of São Paulo State, Brazil. *Tropical Lichens: Their Systematics, Conservation, and Ecology*, (D.J. Galloway, ed.). Clarendon Press, Oxford. pp. 151-170.
- McCune, B., J.P. Dey, J.E. Peck, D. Cassell, K. Heiman, S. Will-Wolf and P.N. Neitlich (1997). Repeatability of community data: species richness versus gradient scores in large-scale lichen studies. *The Bryologist*, **100**: 40 46.
- Meher-Homji, V.M. (1973). A Phytosociology study of the *Albizia amara* Boiv. Community. *Phytocenologia*, 1: 114 129.
- Montfoort, D. and R.C. Ek (1990). Vertical distribution and ecology of epiphytic bryophytes and lichens in a lowland rain forest in French Guiana. Institute of Systematic Botany, Utrecht.
- Neitlich, P. N. and B. McCune (1997). Hotspots of Epiphytic Lichen diversity in Two Young Managed Forests. Conservation Biology, 11: 172-182.
- Pharo, E.J. and A.J. Beattie (1997). Bryophyte and lichen diversity: A comparative study. Aus. J. Ecol., 22: 151-162.
- Richardson, D.H.S. (1992). Pollution monitoring with lichens. Richmond Publishing Co. Ltd., London. pp. 1-76.
- Santharam, V. (1992). Impact of urbanisation and human pressures on the scrub-jungle birds around Madras. *Blackbuck*, 3: 14-19.
- Shankar Raman, T.R., R.K.G. Menon and R. Sukumar (1995). Decline of Blackbuck (Antilope cervicapra) in an insular nature reserve: The Guindy National Park, Madras. Curr. Sci., 68: 578-580.
- Sehgal, J.L., D.K. Mandal, C. Mandal and S. Vadivelu (1990). *India Agro-Ecological regions (map)*. National Bureau of Soil Survey & Land Use planning (ICAR), Nagpur.
- Singh, K.P. and G.P. Sinha (1994). *Lichen Flora of Nagaland*. Bishen Singh Mahendra Pal Singh, Dehra Dun. pp. 1-498.
- Tschermak-Woess, E. (1989). The algal partner. CRC Handbook of Lichenology Vol 1. (M. Galun, ed.). CRC Press, Boca Raton, Florida. pp. 39-94.
- Upreti, D.K. (1995). Loss of diversity in Indian lichen flora. *Envrionmental Conserv.*, **22**: 362-363. Wolseley, P.A. and B. Aguirre-Hudson (1997). The ecology and distribution of lichens in tropical deciduous and evergreen forests of Northern Thailand. *J. Biogeography*, **24**: 345-362.
- Wolseley, P.A. and K.V. Pryor (1999). The potential of epiphytic twig communities on *Quercus* petraea in a welsh woodland site (Tycanol) for evaluating environmental changes. Lichenologist, 31: 41-61.