IMPACT OF HUNTING ON POPULATION OF PHEASANTS IN THE WESTERN INDIAN HIMALAYAS

HILALUDDIN, RASHID Y. NAQASH¹ AND NAIM AKTHAR²

Planning Commission, National Rainfed Area Authority, D.P. Shastri Marg, New Delhi – 110 067 Email: hilaluddin@yahoo.com

ABSTRACT

The present study tested the hypothesis that "game species are lost when forest areas are subjected to hunting and populations of already threatened species may become locally extinct from many forests of the Western Indian Himalaya". The study was designed to determine effects of vegetation structure and heterogeneity, and behaviour of animal species on their encounters in hunted and protected sites. The compared forest patches are similar in abundance of trees, herbs, and shrubs. Animal densities allowed the investigator to determine whether higher densities of pheasants in the protected areas are simply due to protection efforts accorded within this zone. The study provides scientific evidence that hunting seriously impacts populations of hunted species. The results show that cheer pheasant (*Catreus wallichi*), kaleej pheasant (*Lophura leucomelanos*), koklass pheasant (*Pucrasia macrolopha*) and monal pheasant (*Lophophorus impejanus*) are seen more often in protected sites than in hunted sites. The locally common species are heavily impacted and at higher risk of local extinctions from forest patches in this landscape than the rare ones.

Keywords: Himalaya, Pheasant, Hunting and impact.

Introduction

Wildmeat harvesting is posing serious threats to survival of wildlife species populations worldwide (Diamond and Case, 1986; Robinson and Bennett, 2000; Barbusea, 2001; Peres and Palacios, 2007; Hilaluddin *et al.*, 2011 and 2012) and heads the list of factors causing global and regional extinctions (Martin and Steadman, 1999). Most efforts investigating impacts of wild animal extractions and their ecological consequences on native wildlife primarily focus on mammals and such information on other equally important animal groups remains fragmentary across the world, while specifically lacking for game birds (Hilaluddin and Kaul, 2007), in particular, across Asian Continent.

Certain top government wildlife officials (Pabla, 2006) are lobbying for regulated hunting of wild animals in India to generate conservation money, arguing that since poaching happens anyway, why not legalise it partially and make the money legtimate? However, if we are to gain the critical conservation benefits that sustainable harvesting programme can provide then we must explicitly recognize and incorporate into our calculations, costs as well as benefits that such exploitations may bring. Therefore, the present study is designed to investigate impact(s) of pheasant offtake on their wild populations in and around Chamba district of the Western Indian Himalaya.

Methods

Study area

Chamba district is located in Himachal Pradesh, falls within India's bio-geographic province "2B Western Himalaya" (Rodgers and Panwar, 1988) and forms part of "Western Himalaya Endemic Bird Area" (Satterfield et al., 1998). Evergreen Temperate Pine Forests dominated by chir pine (Pinus roxburgii), Evergreen Temperate Oak Forests dominated by ban oak (Quercus leucotrichophora) and Mixed Evergreen Temperate Forests with extensive Southwest facing grasslands occur in Chamba (Champion and Seth, 1968). The associates of ban oak and chir pine are Rhododendron (*Rhododendron* arboretum), Deodar (Cedrus deodara), Himalayan blue pine (Pinus wallichiana), Yew (Taxus baccata), and Himalayan fir (Abies pindrow). The undergrowth is predominated by Barberry (Berberis sp.) and hybrid Berries (Rubus sp.) with some rose (Rosa sp.), Daphne (Daphne sp.), and Cape myrtle (Myrsine sp.). These vegetation communities in Chamba district support over 200 bird species (Hilaluddin, unpublished data), including restricted range Red-browed finch (Callacanthis burtoni) and globally threatened Cheer pheasant and Western tragopan (Tragopan melanocephalus) (Birdlife International, 2004).

Hunting occurs mostly outside PAs in the Western

Hunting of game birds has deleterious impacts on their population including extinction of several species from many parts of Indian Western Himalaya.

Indian Himalaya to provide supplementary protein to an otherwise vegetarian staple mainly targeting large mammals and galliformes (Kaul *et al.*, 2003, 2004). Effective community rules (restrictions on game extractions protecting sensitive and globally threatened species, breeding seasons, age-sex classes, bag limits) with regard to hunting are lacking and people are increasingly switching over to modern hunting devices (guns) at the cost of traditional ones. With methods varying from snaring to firearms three major types of hunting activities are prevalent: (1) Organized hunting targeting large bodied species with specific market; (2) regular snaring targeting galliformes in village vicinities, to provide food for family; (3) opportunistic hunting trips in forests for subsistence requirements.

Galliform census

Five forest fragments were studied in and adjoining Chamba town between 1410 and 3290 meters amsl during summer 2006. Forest fragments here are defined as continuous blocks of forests surrounded by agriculture fields and human settlements. In this study greatest distance between sites was <150 km and quantitative hunting pressures were not recorded. However, as an alternative, sites were selected from documented animal extraction rates and patterns in the forest fragments of Indian Western Himalayas in literature (Kaul et al., 2003; Hilaluddin and Nagash, 2006) and focal discussions with hunters. These measures were used to define sites as "protected" and "hunted". The protected sites were located in Khajjayar-Kalatop and Kugti WLS; whereas, hunted sites were in Chamba and adjoining Kishtwar Territorial Forest Divisions (Hilaluddin et al., 2011).

Pheasant populations were estimated using block transect (pre-defined areas) surveys following sample count strategy (Sutherland, 1996) identified on topographic maps after discussing with concerned wildlife officials and local hunters. For verification, these were re-identified on the ground during reconnaissance surveys and starting and ending points were permanently marked on trees with paint for future reference. Transect length was measured using Hip-Chain Method (Chaturvedi and Khanna, 1982). Covering all major vegetation types in two management units, transects were spaced at a minimum distance of 1 km at a site to avoid double counts. Generally, for visibility, streams and prominent trails were utilized as sampling areas not withstanding bias in estimating natural densities as unconscious bias exists in route selection if landscapes differ, even subtly. However, vegetation characteristics of hunted and protected forests measured as part of present study did not show

statistically significant variations (Table-3). Thus, homogeneity in vegetation between hunted and protected sites will outweigh variations in animal densities, if any occur, as a consequence of landscape heterogeneity across two management units.

Each transect was scanned daily for pheasants, at least for three consecutive days following same census schedule. The animal counts in all transects within an area began simultaneously at sunrise and ended between 830 and 1000 hours depending upon transect length. Censuses involved walking slowly (approximately 1-1.5 km/ hour) and stopping briefly at every 50-100 m interval (Emmons, 1984) with the intention of flushing birds. A team of 5 observers trained in identifying galliformes with local names and walking transects scanned the 10-15 m area on both sides of the transect depending upon the terrain and visibility. Maintaining a fixed distance of 20-30 m from each other and silence for the calm of animals on transect, observers recorded total number of animals seen, sighting time, movement direction and activities in pilot surveys so that individuals evidently seen more than once by two different observers could be taken into account. Nawaz et al. (2000) used the Belt Drive Count method for estimating pheasant populations in Pakistan Himalaya in winter in extremely steep and rocky terrain covered with snow and recommended its use with some limitations for the western Himalayas. As suggested downward pilot surveys were conducted from top to bottom of hill. However, the study area hardly received snowfall during summer and had snow-free peaks during the course of the study.

Vegetation survey

The composition of trees, shrubs, and herbs within each belt transect was also assessed by selecting 5 sample points at 500 meters regular distances on 15 meters either side in order to avoid relatively disturbed vegetation due to trampling by cattle and humans. Circular plots (10 m radius) were established for estimating populations of trees (greater than 31 cm in basal girth) and shrubs (3 m radius), respectively; whereas, 1 m X 1 m square plots were established for quantifying populations of herbaceous vegetation. In addition, vegetation structure was also measured at each sample point. While Grid Mirror Method (Rodgers, 1991) was adopted to quantify canopy cover of tree species, Line Intercept Method and Crown Diameter Method (Muller-Dombois and Ellenberg, 1974) were used to estimate crown cover of herbs and shrubs, respectively.

Data analysis

Bird densities per unit area at a given day were calculated as the total number of individuals of a species

Table 1: Pheasant species seen and number of observations recorded during Belt Transect Count sampling in the Western Indian Himalaya.

Species (Common name)	Scientific name	Number of observations
Cheer pheasant	Catreus wallichi	08
Kaleej pheasant	Lophura leucomelanos	23
Koklass pheasant	Pucrasia macrolopha	91
Monal pheasant	Lophophorus impejanus	28

seen on a particular transect on a particular day divided by the total area of that block. A non-parametric Man-Whitney U test was used to compare densities of each animal species in protected sites with their corresponding densities in the hunted sites to investigate impact(s) of hunting on their populations.

It was assumed, there might be differences in the vegetation characteristic between hunted and protected sites independent of hunting pressure, although all of the patches were once part of the same continuous forest and are of the same geological origin. Therefore, vegetation structural and compositional heterogeneity between hunted and protected sites was statistically compared using Man-Whitney U test. Vegetation densities of plant bio-morphs viz. trees, shrubs and herbs at each sampled point were calculated following Curtis and McItonish (1950). The general diversities (H') of biomorphs were computed in accordance with Shannon-Wiener (1963), whereas species richness was calculated as total number of a species occurring in a sample unit (Ludwig and Reynolds, 1988). All statistical tests were performed in following Sokal and Rohlf (1995).

Results

Sample size and survey efforts

A total of 16 belt transects - 8 each in protected and hunted sites (Hilaluddin *et al.*, 2011) were actively

scanned for pheasants. During 3 consecutive day census period, the census party traveled a total of 212.1 km (108 km in the protected site; 104.1 km in the hunted site) in 157.48 hours (77.11 hours in the protected site; 80.37 hours in the hunted site). All species were observed on more than 5 occasions (Table 1), ranging from 8 for cheer pheasant to 91 for koklass pheasant. The survey teams spent a mean of 9.65 hours/transect 0.69 CI in hunted site and an average of 10.01 hours/transect 0.88 CI in protected site actively searching pheasant.

Vegetation structure and composition

With the exception of statistically significant higher shrub densities in protected sites as compared to hunted ones, the vegetation characteristics between the two management units showed statistically non-significant differences (Table-2), although densities, diversities, richness and covers of trees, shrubs, and herbs were generally higher in protected site.

Animal abundance

The comparisons showed differences in game bird densities between hunted and protected sites (Table 3). In general, pheasants were more often seen in protected site than hunted one. Koklass pheasant and Kaleej pheasant have shown statistically significant variations in their densities between hunted and protected sites. The densities of cheer pheasant and monal pheasant did not show significant difference. Kaleej pheasant, monal pheasant, koklass pheasant and cheer pheasant are 77%, 62%, 49% and 20%, respectively, less common in hunted sites when compared to protected sites.

Discussion

Two types of sources of variations might affect animal abundance among different forest patches. First, vegetation structure and compositional heterogeneity, which independent of hunting, may cause changes in

Table 2: Vegetation characteristics (mean median) with statistical variations in hunted and protected sites.

Plant bio-	Vegetation structural and	Hunted site	Protected site	Statistical values	
morph type	compositional variables			Mann-Whitney U test	Р
Tree	Density (# of plants/km²)	307.4 ± 238.8	332.8 ± 302.54	U ₇₈ = 721.5	0.45
	Diversity (H')	0.6 ± 0.56	0.6 ± 0.56	$U_{78} = 797.5$	0.98
	Richness (N ₀)	2.3 ± 2.0	2.3 ± 2.5	$U_{78} = 765.5$	0.73
	Tree cover (%)	36.0 ± 30.0	30.1 ± 30	$U_{78} = 731.0$	0.5
Shrub	Density (# of plants/km²)	2226.4 ± 1783.45	4024.5 ± 2547.8	$U_{78} = 570.5$	0.03*
	Diversity (H')	0.5 ± 0.5	0.7 ± 0.68	$U_{78} = 664.5$	0.19
	Richness (N ₀)	2.2 ± 2.0	2.9 ± 2.9	$U_{78} = 663.0$	0.18
	Shrub cover (%)	29.7 ± 25.0	24.1 ± 20.0	$U_{78} = 730.0$	0.5
Herb	Density (# of plants/km²)	35540 ± 30500	39582 ± 32200	$U_{78} = 751.5$	0.64
	Diversity (H')	1.01 ± 1.01	1.3 ± 1.21	$U_{78} = 603.5$	0.06
	Richness (N ₀)	4.6 ± 4.0	4.8 ± 4.0	$U_{78} = 672.0$	0.21
	Herb cover (%)	37.65 ± 30.0	31.3 ± 20.0	$U_{78} = 735.0$	0.53

^{*} Denotes significant values. (Table reproduced from Hilaluddin et al., 2011).

924 The Indian Forester [October

Table 3: Pheasant densities (mean median) with statistical variations in hunted and protected sites in the Western Indian Himalaya.

Species	Number of animals/km ²			Statistical values	
	Hunted site	Protected site	Overall	Mann-Whitney U test	Р
Cheer pheasant	1.2 ± 0	1.5 ± 0	1.4 ± 0 (0)	U ₁₄ = 29.0	0.6
Kaleej pheasant	1.2 ± 1.6	5.2 ± 4.2	3.6 ± 3.2 (0)	$U_{14} = 4.0$	0.003*
Koklass pheasant	4.7 ± 4.2	9.3 ± 5.4	6.1 ± 5.2 (0)	$U_{14} = 8.0$	0.01*
Monal pheasant	1.3 ± 0	3.5 ± 2.9	2.4 ± 0 (0)	$U_{14} = 18.0$	0.1

^{*}Denotes significant values. Values in parentheses depicted in column 4 are quartiles.

species abundance between the two sites. Second, hunting affects the behaviour of animals and makes hunted species difficult to sight than non-hunted ones. Animals in the protected site may be less wary and, therefore, easier to sight than the same species in hunted site (Hill et al., 1997). Comparisons of vegetation characteristics in hunted and protected sites showed that hunting pressures within the two forest types were independent of vegetation structure and composition as there is little detectable difference between the two units, at least on the basis of the vegetation heterogeneity measured as part of this study (Hilaluddin et al., 2011). Moreover, the studied forest fragments were once part of the same continuous forest, and are of the same geological origin. Further, it was quite unlikely to miss animals in narrow strips as taken in this study during the census which was akin to a combing operation. Thus, animal densities between two management units are unlikely to be affected due to changed animal behaviour (more wary in protected site). However, the densities reported of certain species (e.g. cheer pheasant) here cannot be relied on for absolute comparisons with other sites, given the lack of control for differences in detectability. Such species are experts in hiding quietly without being spotted. This factor remained uniform across all transects and, therefore, made possible viable comparisons of bird abundances between two management units.

Thus, it could be concluded that hunting is resulting in decline of pheasant in this landscape of the world, severely reducing the abundances of kaleej and koklass pheasant but with insignificant impact on the densities of monal pheasant. Compound effect of population statistics at 0.7 hectare per capita (Anon., 2000), deforestation due to logging (FSI, 2005), adoption of modern hunting devices and a community devoid of hunting regulations (Kaul et al., 2003) has increased the protein demand in this landscape and seems to exacerbate the hunting impact. This accentuated by logging, agriculture, and road network expansion may result in local extinctions of certain game species from several un-protected forest areas such as that of Western tragopan from the hunted forest of Kiri Beat under Lower Chamba Range - one of the survey sites.

The present study has demonstrated the impact of game bird hunting on their wild populations in the Indian Western Himalaya. It, however, remains unclear how hunting is affecting the population dynamics of game species. Further, no information exists on population age structures and demographics of hunted versus protected sites, impact of hunting on game birds of different age classes, and impact of hunting on vegetation characteristics and demographics of plant populations in hunted versus protected sites from Asia, in general, and India in particular. These require immediate investigations.

Further, vertebrate animal harvesting theory suggests that a given level of harvest is more likely to be sustainable for a species with 'faster' life history, early maturity and high reproductive rate (Stokes et al., 1993; Kirkwood et al., 1994; Pope et al., 2001). Species response to over-exploitation is similar to that of other anthropogenic threats. Sustainable harvesting acts as selective agent of extinction, unless care is taken to make it otherwise (Law, 2001); large slow species are expected to adapt to the new mortality regime by evolving smaller bodies and faster life histories. Either way some of the character diversity – an important aspect of biodiversity (Williams and Humphries, 1996) is lost. It is probable that all significant use has biodiversity survival costs. Therefore, we must look for socially acceptable, economically equitable and morally agreeable ways of minimizing hunting pressures on wild animals and there is no escape from investing sustainably in their explicit protection.

Plant species encountered in the four recovering plots are given in Table 1. while the consolidated details are given in Table 2. Altogether 216 species belonging 64 families and 58 genera were collected from the four plots. Number of tree species was recorded in each individual plot ranged from 23 to 50 with a total number of 58 species. Shrub species in the four plots ranged from 37 to 45 and the pooled number was 56. Similarly, the total number of herbaceous plants encountered in the recovery vegetation was 89. Plot 1 contained the highest number of plants in all categories while plot 2 showed the lowest number of plants. Maximum diversity of trees was found in plot 4 whereas the lowest was observed in plot 2. The pooled data of herbaceous species, shrubs, trees and climbers were recorded as 89, 56, 58, and 12 respectively.

Acknowledgements

The authors are grateful to the staff of the Wildlife Wing of Himachal Pradesh for their active participation in animal census exercises. They thank the graziers and the hunters for their open hearted discussions and suggestions during research design and becoming members of the census team. Last but not least, this study was funded by Oriental Bird Club, U.K. under its small grant programme.

पश्चिमी भारतीय हिमालयों में चकोर (फीजैण्ट) की आबादी पर शिकार का प्रभाव

हिलालुद्दीन, राशीद नकेश और नईम अख्तर

सारांश

वर्तमान अध्ययन में इस परिकल्पना का परीक्षण किया गया कि ''आखेट प्रजाित तब लुप्त हो जाती हैं जब वन क्षेत्र में शिकार होता है और पहले से संकटस्थ प्रजाितयों की आबािदयां पिश्चमी भारतीय हिमालय के कई वनों से स्थानीय रूप से समाप्त हो सकती है।'' इस अध्ययन को वनस्पित संरचना और विजातीयता के प्रभाव और आखेटित एवं संरक्षित स्थलों में इनकी भिड़न्त पर पशु प्रजाितयों के व्यवहार का निर्धारण करने के लिए अभिकित्पक किया गया। तुलना किए गए वन खण्ड वृक्षों, शाकों और झािड़यों की प्रचुरता में समान थे। पशु घनत्वों में अन्वेषकों को यह निर्धारित करने हेतु अक्षम बनाया कि क्या संरक्षित क्षेत्रों में चकोरों के उच्च घनत्व केवल इस क्षेत्र के भीतर उपलब्ध कराए गए सुरक्षा प्रयासों के कारण हैं। अध्ययन वैज्ञािनक प्रमाण उपलब्ध कराता है कि शिकार आखेटित प्रजाितयों की आबािदयों पर गंभीर प्रभाव डालता है। परिणाम दर्शाते हैं कि चीर फीजेण्ट (केट्रीयत वािलिच), कलीज फीजेण्ट (लोफूरा ल्यूकोमीलेनॉस), कोकलास फीजेण्ट (पूक्रेसिया मैक्रोलोफा)और मोनाल फीजेण्ट (लोफोफोरस इम्मीजेनस) आखेटित स्थलों की अपेक्षा संरक्षित स्थलों में प्राय: दिखाई पड़ते हैं। स्थानीय रूप से सामान्य प्रजाितयां दुर्लभ की अपेक्षा इस भू-दृश्य में वन खण्डों से स्थानीय विलोपन के उच्च जोखिम पर हैं और अत्यधिक प्रभावित हैं।

References

Anon. (2000). Population and Forests: a Report on India (2000), United Nations Population Fund, New Delhi.

Barbusea, A. (2001). Hunting impacts on waders in Spain: effects of species protection measures, *Biodiversity & Conservation*, 10: 1703-1709.

Birdlife International. (2004). State of the world's Birds: Indicators of our Changing World. Birdlife International, Cambridge, U.K.

Champion, H.G. and Seth S.K. (1968). The forests types of India. Government of India Press, New Delhi.

Chaturvedi, A.N. and Khanna, L.S. (1982). Forest Mensuration. International Book Distributors, Dehradun.

Curtis, J.J. and McItonish, R.P. (1950). The interrelationship of certain analytic synthetic phyto-sociological characters, Ecology, 31:434-455.

Diamond, J. and Case, T.J. (1986). Overview, introduction, extinctions, exterminations and invasions. In: *Community Ecology* (Diamond, J. and T.J., Case, eds.). Harper & Row, New York, U.S.A. Pp. 56-79.

FSI. (2005). The State of Forest 2003. Forest Survey of India, Dehradun.

Hilaluddin and Kaul, R. (2007). Galliformes hunting in India: the bigger picture. In: Galliformes of India (Sathyakumar, S. and S., Sivakumar eds.). *ENVIS*, Wildlife Institute of India, Dehradun. Pp. 163-167.

Hilaluddin and Naqash, R.Y. (2006). Survey and census report of Kishtwar High Altitude National Park. Department of Wildlife Protection, Kishtwar, India.

Hilaluddin, Khan, D.N. and Abbassi, F. (2011). Impact of hunting on large mammal densities in the Western Indian Himalaya, *Indian Forester*, 137 (10): 1141-1146

Hilaluddin, S., Yasmeen and Saleem, G. (2012). Is there a link between wild animal hunting and conservation in Singhalila National Park?, *Indian Forester*, 138 (6): 503-512

Hill, K., Padwe, J., Bejyvagi, C., Bepurangi, A., Jakugi, A., Tykuarangi R., and Tykuarangi T. (1997). Impact of hunting on large vertebrates in the Mbaracayu Reserve, Paraguay, *Conservation Biology*, 6:1339-1353.

 $Kaul, R., Hilaluddin\ and\ Jandrotia, J.S.\ (2003).\ \textit{Extraction of wild meat in the Western Indian Himalaya}: an assessment.\ Oriental\ Bird\ Club, U.K.$

Kaul, R., Hilaluddin, Jandrotia, J.S. and McGowan, P.J.K. (2004). Hunting of large mammals and pheasants in the Western Indian Himalaya, Oryx, 9:426-431.

Kirkwood, G.P., Beddington, J.R. and Rossonw, J.A. (1994). Mammalian life histories and responses of populations to exploitation. In: *Large Scale Ecology and Conservation Biology* (Edwards, P.J., R.M., May and N.R., Webb eds.). Blackwell Scientific Publication, Oxford, U.K. Pp. 169-189.

Law, R. (2001). Phenotypic and genetic changes due to selective exploitation. In: Conservation of Exploited Species (Reynolds, J.D., G.M., Mace, K.H., Redford and J.G., Robinson eds.). Cambridge University Press, Cambridge, U.K. Pp. 323-342.

Ludwig, A.J. and Reynolds, J.F. (1988). Statistical Ecology: a Primer of Methods and Computing. John Wiley & Sons, New York, U.S.A.

Martin, P.S. and Steadman, D.W. (1999). Pre-historic extinctions on islands and continents. In: *Extinction in Near Time: Causes, Contexts and Consequences* (Mocphee, R.D.E. eds.). Kluwer/Plenumn New York, U.S.A. Pp. 17-55.

- Muller-Dombois, D. and Ellenberg, H. (1974). Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York, U.S.A.
- Nawaz, R., Garson, P.J. and Malik, M. (2000). Monitoring pheasant populations in montane forests: some lessons learnt from Pakistan Galliformes project. In: *Proceedings of 2nd International Galliformes Symposium* (Woodburn, M., P.J.K., McGowan, J., Carroll, A.H., Musavi and Z., Zheng-wang eds.). World Pheasant Association-International, Fordingbridge, U.K. Pp. 196-203.
- Pabla, H.S. (2006). Good prospects for community-based conservation hunting in Madhya Pradesh, India. Madhya Pradesh Wildlife & Forests Department, Bhopal.
- Peres, C.A. and Palacios, E. (2007). Basin-wide effects of game harvest of vertebrate population on densities in Amazonian forests: Implications for animal mediated seed dispersal, *Biotropica*, 39:304-315.
- Pope, J.G., McDonald, D.S., Dann, N., Reynolds, J.D. and Jennings, S. (2001). Gauging the vulnerability of non-target species to fishing, ICES *Journal of Marine Science*, 57:689-696.
- Robinson, J.G. and Bennett, E.L. (2000). Hunting for Sustainability in Tropical Forests. Columbia University Press, New York, U.S.A.
- Rodgers, W.A. and Panwar, H.S. (1988). Planning a Protected Area Network in India. Vol. 1 and 2. Wildlife Institute of India, DehraDun.
- Rodgers, W.A. (1991). Techniques for Wildlife Census in India: a Field Manual. Wildlife Institute of India, Dehradun.
- Satterfield, A.J, Crosby, M.J., Long, A.J. and Wege, D.C. (1998). *Endemic Bird Areas of the World: Priority Areas for Conservation*. Cambridge University Press, Cambridge, U.K.
- Shannon, C.E. and Wiener, W. (1963). The Mathematical Theory of Communication. University Illinois Press, Urbana, U.S.A.
- Sokal, R.R. and Rohlf, F.J. (1995). *Biometry: Principals and Practice of Statistics in Biological Research*. W.H. Freeman & Company, New York, U.S.A.
- Stokes, T.K., McGlade, J.M. and Law, R. (1993). The Exploitation of Evolving Resources. Springer-Verlag, Berlin, Germany.
- Sutherland, W.J. (1996). Why census? In: *Ecological Census Techniques: a Handbook* (Sutherland, W.J. eds.). Cambridge University Press, Cambridge, U.K. Pp. 1-9.
- Williams, P.H. and Humphries, C.J. (1996). Comparing character diversity among biotas. In: *Biodiversity: a Biology of Numbers and Difference* (Gaston, K.J. eds.). Oxford, U.K.: Blackwell Science Ltd. Pp. pp. 54-76.

INDIAN MEDICINAL AND AROMATIC PLANTS - PART I AND II

Few copies of special issues of the *Indian Forester* on Medicinal and Aromatic Plants –I & II are available for sale on 25% discount for our readers, subscribers and those interested. (The original price of each issue is Rs. 200=00 only, forwarding charges extra). The above special issues have covered all aspects of Medicinal and Aromatic Plants as listed below:

1. INDIAN MEDICINAL AND AROMATIC PLANTS - PART I (January, 2003)

Focusing on: MEDICINAL PLANT RAW MATERIALS FOR INDIAN DRUG AND PHARMACEUTICAL INDUSTRY; MEDICINAL PLANTS BASED FOREST MANAGEMENT; THREATENED HERBAL HERITIAGE; THREATENED MEDICINAL PLANTS; COMMERCIAL EXPLOITATION AND CONSERVATION; MARKET INFORMATION SYSTEM; NATIONAL MEDICINAL PLANTS BOARD (INTRODUCTION AND SCHEMES); UTILIZATION OF WASTELANDS FOR GROWING MEDICINAL PLANTS; ORGANIC CONVERSION AND CERTIFICATION.

2. INDIAN MEDICINAL AND AROMATIC PLANTS - PART II (February, 2003)

Focusing on: MEDICINAL PLANT RAW MATERIALS FOR INDIAN DRUG AND PHARMACEUTICAL INDUSTRY; DEVELOPMENT OF MARKETING; MEDICINAL PLANTS CONSERVATION AND SUSTAINABLE USE THROUGH FOREST GENE BANKS; COMMUNITY BASED CONSERVATION AND MANAGEMENT OF MEDICINAL PLANTS IN INDIA.; SATUS OF MEDICINAL PLANTS CONSUMPTION BY THE PHARMACEUTICAL INDUSTRIES IN GUJARAT STATE; MEDICINAL TREES OF UTTARANCHAL STATE: DISTRIBUTION, USE PATTERN AND PROSPECTS FOR CONSERVATION: STANDARDIZATION AND QUALITY CONTROL:

Kindly contact our Business Manager with your valued orders:

Business Manager, INDIAN FORESTER P.O. NEW FOREST, DEHRADUN –248006 (Uttarakhand)