(II)

EVALUATION OF GROWTH RESPONSE OF TEAK TO HIGH INPUTS

In our articles titled "Sewage Water as potential for tree growth - A case study on Teak (Tectona grandis) plantations", and "Growth response to irrigation -Eksal (Ambhadi) Teak Plantation - A case Study" (see pages 472-481 and 491-502) a passing reference was made on quality of wood developed in irrigated and high input teak plantations. As the wood samples were not scientifically tested by competent authority for its physical and mechanical properties. the material was described in general terms. Recently timber developed under similar conditions, was sent for testing to Institute of Wood Science and Technology, Bangalore, from whom assessment report is now available, which being of topical interest is discussed here.

M/s. Ichalkaranji Co-operative Spinning Mills has raised a teak plantation in 1986, at Ichalkaranji, District Kolhapur in the Western Maharashtra Dry Zone i.e. Agro-climatic zone VI of Maharashtra. In addition to the normal practices, the plantation receive a regular flood irrigation at an interval of 3 to 4 weeks, during the dry season. As a spinning mill, the firm generates lot of cotton waste/linter, which in effect is bio-degradable and results in increasing humus. The firm used such a material to fertilise the teak plantation. However, quantitative details of such fertilisation are not available.

As a consequence to such high inputs, the plantation has put on good growth, for the average site quality of the area. Close monitoring of this plantation activity has revealed that saplings attained average dimensions of 28.5 cm (G.H.O.B.) and 10.8 m of height, at the age of 7 years. The total basal area was 14.82 m^2 and thus, thinning was carried out in the year 1994. The samples collected from thinned material were supplied to Institute of Wood Science and Technology, Bangalore as indicated in Table 1.

Sample No.	Length (m)	Mid girth (cm)	Girth at large end (cm)	Girth at small end (cm)
T1	3.00	25	32	21
T2	3.02	30	36	25
T3	3.00	48	49	38
T4	3.02	37	45	36
<u>T5</u>	3.00	50	62	46

Table 1

1995	1
------	---

Table	2
-------	---

	Tectona grandis*		Standard Teak	
Properties	Green Average	Air-dry Average	Green Average	Air-dry Average
Sp. gravity (based on oven dry weight and volume at test)	0.425	0.479	0.596	0.604
% Moisture content	68%	12%	76.6%	12%
Weight	786	538	1056	672
Static bending				
Fiber stress at elastic limit (kg/cm	²) 362	423	509	651
Modulus of rupture (kg/cm ²)	605	615	841	959
Modulus of elasticity (X10 ³ kg/cm ²)) 76.2	70.6	109.7	119.6
Compression parallel to grain Maximum crushing stress (kg/cm ²) 211	295	415	532
Compression perpendicular to grain Compressive stress at E.L. (kg/cm ²		104.4	86	101
Hardness (load to embed 1.128 cm dia steel ball to half its diameter)				
Radial (kg)	315	450	557	502
Tangential (kg)	334	550	551	524
End (kg)	459	655	486	488
Shear parallel to grain				
Radial (kg/cm ²)	35.1	64.1	89.5	96.6
Tangential (kg/cm ²)	47.6	82.6	100.2	108.0
Tension perpendicular to grain				
Radial (kg/cm ²)	10.1	36.8	68.3	57.6
Tangential (kg/cm ²)	17.3	35.4	79.4	66.4

* Test results based on 4 billets

	Table 3Nail holding power			Table 4Screw holding power		
	Green Average	Air-dry Average		Green Average	Air-dry Average	
Side	98	52	Side	129	121	
End	48	20	End	51	52	

Indian Forester

Table 5

Suitability indices of Tectona grandis in terms of Teak as 100

Properties	Suitability indices
Strength as a beam	69
Stiffness as a beam	65
Suitability as a post	60
Shock resisting ability	62
Shear	53
Refractoriness	31
Hardness	73
Weight or Heaviness	80

Conservator of Forests, Forest Research Circle, Pune (Maharashtra). Results of various tests carried out at the Institute are tabulated in Tables 2, 3, 4 and 5.

The Head of Wood properties and Uses Division of the Institute, concludes that the timber tested is moderately heavy, weak, not tough and moderately hard. Our apprehensions that indiscriminate high inputs will jeopardise timber quality have been vindicated. It is hoped that this investigation and its result will be kept in view by all those entrepreneurs who are selling "dreams" of high returns.

M.G. Gogate

[June,

580