BIODIVERSITY OF AQUATIC MACROPHYTES IN SUCHINDRAM THEROOR BIRDS SANCTUARY, KANYAKUMARI DISTRICT, TAMIL NADU, INDIA

S. RAMARAJAN, A.G. MURUGESAN* AND A. SARAVANA GANDHI¹

Manonmaniam Sundaranar University, Sri Paramakalyani Centre of Excellence in Environmental Sciences, Alwarkurichi, Tamil Nadu, India. Email: agmspkce@rediffmail.com

ABSTRACT

A detailed survey of aquatic macrophytes in Suchindram Theroor Birds Sanctuary, Kanyakumari district of Tamil Nadu was made during the period of two year (January-2011 to December-2012). A total of 46 species belonging to 24 families and 35 genera were identified, of these 3 are pteridophytes and 43 angiosperms. Further, the aquatic macrophytes classified in morphological group viz., floating (12), submerged anchored and floating leaved anchored (7) and emergent anchored (20). In Suchindram Perennial water source of the "Sanctuary serves as an important gateway for the migratory waterfowl.

Key words: Suchindram Theroor Birds Sanctuary, Aquatic Macrophytes, migratory waterfowl.

Introduction

Aquatic flora is an important source for well functioning of wetland ecosystem, biological productivity and support for other organisms (Shah et al., 2011). Aquatic diversity is considered as a key component for the fresh water ecosystem of shallow, lakes and ponds, where they form an extensive and diverse littoral zone with numerous associated invertebrates, fish and birds (Jappesen et al., 1998; Mitchell and Perrow, 1998) and also act as an efficient accumulator of heavy metals (Devlin, 1967; Chung and Jeng, 1974).

Fresh water ecosystem is tremendously threatens to abiotic and biotic pollution of different kinds, rapidly expanding human population, land use/land cover changes, unfavorable climatic changes that disrupts rainfall are all the other stresses on freshwater habitat, which also greatly threatens the floral diversity of aquatic ecosystem (Chambers et al., 2008; Rasingam, 2010; Ramachandra, 2010).

Previously Subrahmanyam (1962) has described 117 aquatic angiosperms and Lavania et al. (1990) has compiled the wetland flora of India; Cook (1996) has published the aquatic and wetland flora of India. From plant biodiversity point of view, many of the perennial ponds of Tamil Nadu still remain unexplored. In this paper, for the first time we present a checklist of aquatic angiosperms in the pond of Suchindram Theroor Birds Sanctuary, Tamil Nadu state, India.

Material and Methods

Study area

The Suchindram Theroor Birds Sanctuary is one of the biggest fresh water tanks in Kanyakumari district of Tamil Nadu state, India. Constitution of this new wildlife sanctuary was proposed in 2002 and remains under consideration of the Government. It is located between Nagarcoil and Kanyakumari on the National Highway with two water bodies, namely Suchindram (8°08'25.58" to 8°09'45.48" N Lat. and 77°27'13.14" E to 77°27'00.56" E Long.) and Theroor (8°11'49.83" to 8°10'27.65" N Lat. and 77°26'43.30" E to 77°28'51.71" E Long.), which are 2 km apart.

Kanyakumari district receives rainfall from both, the south-west and the north-east monsoons. The southwest monsoon starts from June and ends in September, while the north-east monsoon extends from October to the mid-December.

The present work is based on the results of extensive systematic field surveys of the plants for a period of two year (January-2011 to December-2012). Field trips were made once in a week covering entire water body with a view to find out the aquatic macrophytes.

The plants have been identified from fresh materials with the help of different floras (Gamble and Fischer, 1935; Subramanyam, 1962; Nair and Henry, 1983; Henry et al., 1987; Henry et al., 1989; Matthew,

Survey of aquatic macrophytes in Suchindram Theroor Birds Sanctuary, reveals 46 species belonging to 24 families and 35 genera.

Table 1: The number of genus and species in each family

S.No	Botanical Name	Life form	Family	SPKCEES Herbarium No
	Pteridophytes			
1	Azolla pinnata R.Br.	Floating	Salviniaceae	914
2	Ceratopteris thalictroides (L.) Brongn.	Floating	Parkeriaceae	916
3	Marsilia minutta L	Emergent anchored	Marsileaceae	924
	Angiosperms			
4	Hygrophila auriculata (Sch.) Heine	Emergent anchored	Acanthacea	912
5	Alternanthera sessilis (L.) R. Br. ex DC.	Emergent anchored	Amaranthaceae	312
6	Alternanthera pungens Kunth.	Emergent anchored		911
7	Limnophyton obtusifolium (L.) Miq.	Floating	Alismataceae	122
8	Aponogeton natans (L.) Engl. & K.Krause	Floating leaved anchored	Aponogetonaceae	982
9	Pistia stratiotes L.	Floating	Araceae	970
10	Wolffia globosa (Roxb.) Hartog & Plas	Floating		981
11	Spirodela polyrrhiza (L.) Schleid.	Floating		986
12	Eclipta prostrata (L.) L.	Emergent anchored	Asteraceae	971
13	Ipomoea aquatica Forssk.	Floating leaved anchored	Convolvulaceae	812
14	Ipomoea carnea Jaeq.	Emergent anchored		960
15	Ipomoea obscura (L.) Ker. G.	Floating leaved anchored		965
16	Cyperus compressus L.	Emergent anchored		990
17	Cyperus halpan L.	Emergent anchored		815
18	Cyperus iria L.	Emergent anchored		913
19	Cyperus rotundus L.	Emergent anchored		822
20	Fimbristylis aestivalis (Retz.) Vahl.	Emergent anchored	Cyperaceae	963
21	Kyllinga squamulata Vahl.	Emergent anchored	Сурстассас	977
22	Rhynchospora corymbosa (L.) Bri.	Emergent anchored		820
23	Hydrilla verticillata (L.f.) Royle	Submerged anchored	Hydrocharitaceae	315
23 24	Ottelia alismoides (L.) Pers.	Submerged anchored	Пуштоспаптасеае	316
25	Vallisneria natans (Lour.) H.Hara	Submerged anchored		923
26	Nechamandra alternifolia (Roxb. ex Wight) Thwaites	Submerged anchored		925
27	Najas graminea Delile	Submerged anchored		940
28	Najas indica (Willd.) Cham.	Submerged anchored		941
29	Najas minor All.	Submerged anchored		500
30	Lemna gibba L.	Floating	Lemnaceae	830
31	Nymphoides hydrophylla (Lour.) K.	· ·	Menyanthaceae	834
32	Neptunia oleracea Lour.	Floating leaved anchored	Mimosaceae	
	Nelumbo nucifera Gaertn.	Floating		835
33 34	Nymphaea nouchali Burm. f.	Floating leaved anchored	Nelumbonaceae	810 860
	<i>y</i> ,	Floating leaved anchored	Nymphaeaceae	860
35	Nymphaea pubescens Willd.	Floating leaved anchored	Opegraces	865
36	Ludwigia adscendens (L.) Hara	Emergent anchored	Onagraceae	891
37	Ludwigia perennis L.	Emergent anchored		892
38	Panicum repens L.	Emergent anchored	D	890
39	Saccharum spontaenum L.	Emergent anchored	Poaceae	989
40	Polygonum glabrum Willd.	Emergent anchored	Polygonaceae	990
41	Polygonum barbatum L.	Emergent anchored	Dontodoriacoac	978 979
42	Eichhornia crassipes (Mart.) S.L.	Floating	Pontederiaceae	878
43	Monochoria vaginalis (Burm. f.) C. Presl ex Kunth.	Floating	Transassa	875
44	Trapa natans L.	Floating	Trapaceae	874
45	Typha angustata B. and Chaub.	Emergent anchored	Typhaceae	870
46	Clerodendrum inerme (L.) Gae.	Floating	Verbenaceae	919

1991). Bentham and Hooker's Natural system of classification was followed to classify the species. Author citation and binomial of collected species were verified with international plant names index (IPNI, 2009). The collected specimens were pressed and dried. After drying, the plants were mounted on the herbarium sheets and labeled properly for future reference. Herbarium sheets of the collected material were

deposited in Sri Paramakalyani Center for Excellence Environmental Sciences Herbarium (SPKCEESH), Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, India.

Results

Total numbers of aquatic macrophytes recorded from Suchindram Theroor Birds Sanctuary water bodies were 46 species of 35 genera distributed in 24 families. Of

Table 2: List of families with number of species

Family	Number of species
Cyperaceae, Hydrocharitaceae	7
Araceae, Convolvulaceae	3
Amaranthaceae, Nymphaeaceae, Onagraceae, Poaceae, Polygonaceae, Pontederiaceae	2
Alismataceae, Acanthaceae, Aponogetonaceae, Asteraceae, Lemnaceae, Menyanthaceae, Mimosaceae, Nelumbonaceae, Trapaceae, Typhaceae, Verbenaceae, Salviniaceae, Parkeriaceae, Marsileaceae	1

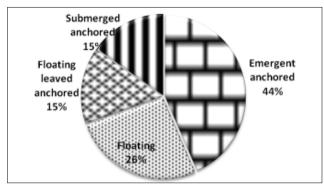


Fig. 1: Habit wise distribution of plant species in the study area

these 3 were Pteridophytes and 43 Angiosperms (Table 1 and Fig. 1). Cyperaceae and Hydrocharitaceae were the dominant families represented by 7 species, followed by Araceae and Convolvulaceae (3 species in each), Amaranthaceae, Nymphaeaceae, Onagraceae, Poaceae, Polygonaceae and Pontederiaceae (2 species in each), while remaining fourteen families with single species (Table 2). Beside these, the aquatic plants contribute 44% for emergent anchored species; 21% for floating plants and 15% each for submerged anchored and floating leaved anchored species (Fig. 1).

Discussion

Suchindram Theroor Birds Sanctuary filled with water throughout the year, owing to this it has floral richness. *Nymphaea* is one of the economically

important plants. Since the flowers have a spiritual importance and the leaves are used for flowers' packing, due to the fact people are interested to cultivate it in large scale. More than that the place is marked as good water storage area to provide sufficient water for agriculture and irrigation purposes and also increases the ground water level. In the present study 46 species of aquatic flora the area were recorded. Lavania *et al.* (1990) has compiled the wetland flora of India. Cook (1996) has published the aquatic and wetland flora of India; Udayakumar and Ajithadoss (2010) has observed for 45 species in Thiruvallur district.

Aguatic ecosystems are threatened globally due to their widespread resources which are utilized for human use. The main problems around the sanctuary are overgrazing and construction, accumulation of garbage and encroachment, which are eliminating the emergent vegetation from the margins of the water bodies. Nowdays increase in habitat loss is due to growth of human population leading to development of human activities into affected natural ecosystem (Sisk et al., 1994; Fahrig, 2001). Further, studies on impacts of pollutants, water quality and ecological quantitative studies are needed to conserve this sanctuary and assessment of biota, continuous monitoring and conservation of water bodies are the important components to safeguard the biological wealth of Suchindram Theroor Birds Sanctuary.

Acknowledgement

Financial assistance from the DAE-BRNS in the form of a major research project to Prof. Dr. A.G Murugesan is gratefully acknowledged.

सुचिन्द्रम थरूर पक्षी अभयारण्य, कन्याकुमारी जिला, तिमलनाडु, भारत में जलीय वृहदपादपों की जैविविविधता एस. रामाराजन, ए.जी.मुरूगेशन एवं ए. सरवना गांधी

सारांश

तिमलनाडु के सुचिन्द्रम थरूर पक्षी अभयारण्य, कन्याकुमारी जिले में दो साल की अविध (जनवरी, 2011 से दिसम्बर, 2012 तक) के दौरान जलीयब ृहदपादपोंक ए कि वस्तृतस वेंक्षणि कयाग या। 2 4क ुलोंए वं 3 5व शंस से बंधितक ुल4 6प जातियोंक ए हचानक गि ई, इनमेंस 3 टेरीडोफाइट और 43 आवृतबीजी हैं। इसके अलावा जलीय बृहदपादपों को आकारिकीय समूह में वर्गीकृत किया गया, उदाहरणार्थ, चलायमान (12), जलमग्न स्थिरक और चलायमान पत्तीदार स्थिरक (7) और उद्गामी स्थिरक (20)। सुचिन्द्रम में अभयारण्य के बारहमासी जल म्रोत प्रवासी जलकुक्कट के लिए एक महत्वपूर्ण मार्ग के रूप में कार्य करते हैं।

References

Chambers P.A., Lacoul P., Murphy K.J. and Thomaz S.M. (2008). Global diversity of aquatic macrophytes in freshwater. *Hydrobiologia*, 595(1): 9-26

Chung I.H and Jeng S.S. (1974). Heavy metal pollution of Ta-Tu river. Bulletin of the Institute of Zoology, Academy of Science, 13: 69-73.

Cook C.D.K. (1996). Aquatic and Wetland Plants of India. Oxford: Oxford University Press. 385 pp.

Devlin R.M. (1967). Plant Physiology. New York: Reinhold. 564 pp.

Fahrig L. (2001). How much habitat is enough? *Biological Conservation*, 100(1): 65–74.

Gamble J.S. and Fischer C.E.C. (1921-35). Flora of the Presidency of Madras. 3 Vols. London: Adlard and Son Ltd.

Henry A.N., Kumari G.R. and Chitra V. (1987). Flora of Tamil Nadu, India. Series I: Analysis. Volume 2. Coimbatore: Botanical Survey of India.

Henry A.N., Chitra V. and Balakrishnan N.P. (1989). Flora of Tamil Nadu, India. Series II: Analysis. Volume 3. Coimbatore: Botanical Survey of India.

IPNI (2009). International Plant Names Index. Accessible at http://www.ipni.org/ipni/plantnamesearchpage.do.

Jeppesen E., Lauridsen T.L. Kairesalo T. and Perrow M.R. (1998). Impact of submerged macrophytes on fish–zooplankton interactions in lakes; pp. 91-114, In: *The structuring role of submerged macrophytes in lakes*. (E. Jeppesen, M. Søndergaard, M. Søndergaard and K. Christoffersen ed.) Ecological Studies 131. New York: Springer.

Lavania G.S., Paliwal S.C. and Gopal B. (1990). Aquatic vegetation of the Indian subcontinent; pp. 29-78, In: *Ecology and management of the Aquatic Vegetation of the Indian Subcontinent* (E. Gopal ed.). Dordrecht: Kluwer Academy Publishers.

Matthew K.M. (1991). An excursion Flora of Central Tamil Nadu. Tamil Nadu: Thiruchirappalli, Rapinat Herbarium.

Mitchell S.F. and Perrow M.R. (1998). Interactions between grazing birds and macrophytes; pp. 175-196, In: (E. Jeppesen, M. Søndergaard, M. Søndergaard and K. Christoffersen ed.). The structuring role of submerged macrophytes in lakes. *Ecological Studies* 131. New York: Springer.

Nair N.C. and Henry A.N. (1983). Flora of Tamil Nadu, India. Series I: Analysis. Volume 1. Coimbatore: Botanical Survey of India.

Ramachandra T.V. (2010). Wetlands: need for appropriate strategies for conservation and sustainable management. *Journal of Basic and Applied Biology*, 4(3): 1-17.

Rasingam L. (2010). Aquatic and wetland plants of little Andaman island, India. Journal of Basic and Applied Biology, 4(3): 52-59.

Shah J.P., Dabgar Y.B. and Jain B.K. (2011). Quantitative analysis of aquatic macrophytes in certain wetlands of Kachchh district, *Gujarat Journal of Pure and Applied Sciences*, 19: 11-13.

Sisk T.D., Launer N.M. and Ehrlich P.R. (1994). Identifying extinction threats: Global analyses of the distribution of biodiversity and the expansion of the human enterprise. *BioScience*, 44(9): 592–604.

Subrahmanyam K. (1962). Aquatic Angiosperms. Botanical Monograph 3. New Delhi: Council of Scientific and Industrial Research, pp190.

Udayakumar M. and Ajithadoss K. (2010). Angiosperms, Hydrophytes of five ephemeral lakes of Thiruvallur District, Tamil Nadu, India. Check List, 6(2):270-274.