Polymorphism of Microsatellites Designed from Expressed Sequence Tags of Dicot/Monocot Carbonic Anhydrases in Teak (Tectona grandis L.F.) Genome
DOI:
https://doi.org/10.36808/if/2017/v143i12/120382Keywords:
CO2 Sink, Photosynthesis Rate, Polymorphism, NCBI, Isozyme Variation, Cross-Amplification.Abstract
Tectona grandis L. f. is one of the most afforested tree species known for its great timber quality. The species DNA was crossamplified through a set of co-dominant markers to evaluate the polymorphism of carbonic anhydrase (CA) enzyme variant. EST-SSR primers were designed from the genes encoding CA in four model plant species viz., Arabidopsis thaliana (dicot), Nicotiana tabacum (dicot), Zea mays (monocot) and Oryza sativa (monocot). Twelve out of nineteen primers amplified highly polymorphic bands and those all belong to monocotyledon plants (Zea mays and Oryza sativa). It reveals that the genes encoding carbonic anhydrase in Indian teak are close to the CA sequences found in monocotyledon model plants. On the other hand, alleles amplified by C4 model plants markers were found more frequent in teak genome comparing to others.References
Butcher P.A., Southerton S. (2006). Marker-assisted selection in forestry species. In: Marker-assisted Selection in Crops, Livestock, Forestry and Fish: Current Status and the Way Forward (Guimaraes, E. (Ed.). FAO, Rome (Chapter 15).
Clough J.M., Peet, M.M. and Kramer P.J. (1981). Effects of high atmospheric CO2 and sink size on rates of photosynthesis of a soybean cultivar. Plant Physiology, 67: 1007-1010.
Ezeibekwe I.O., Nwagbara E.C., Okeke S.E. and Isaac U. (2013). Comparative leaf epidermal features of Gmelina arborea, Tectona grandis, Clerodendron spledems, Vitex doniana, and Vitex simplicifolia (Verbenaceae). Global Research J. Science, 2(2): 73-76.
Farooqi M.Q.U., Sa K. J., Hong T.K. and Lee J.K. (2016). Bulk segregant analysis (BSA) for improving cold stress resistance in maize using SSR markers. Genetic and Molecular Research, 15(4): gmr15049326
Hansen O.K., Changtragoon S., Ponoy B., Kjær E.D., Minn Y., Finkeldey R., Nielsen K.B. and Graudal L. (2015). Genetic resources of teak (Tectona grandis Linn. f.)—strong genetic structure among natural populations. Tree Genetics & Genomes, 11:802 DOI 10.1007/s11295-0140802-5
Hedegart T. and Eigaard J. (1965). Chromosome number of Teak (Tectona grandis L. f.). The Arboretum, 115 pp. http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
Liu K. and Muse S.V., (2005). Integrated analysis environment for genetic marker data. Bioinformatics, 21(9): 2128-2129.
Ma K.H., Kim K.H., Dixit A., Chung I.M., Gwag J.G., Kim T.S. and Park Y.J. (2010). Assessment of genetic diversity and relationships among Coix lacryma-jobi accessions using microsatellite markers. Biologia Plantarum, 54: 272-278.
Marquardt P.E. and Epperson B.K. (2004). Spatial and population genetic structure of microsatellites in white pine. Molecular Ecology, 13(11): 3305-3315.
Narayanan C., Dubey S., Wali S.A., Shukla N., Kumar R., Mandal A.K. and Ansari S.A. (2008). Comparative efficacy of different DNA extraction method for PCR-based assay on Tectona grandis L. f. Indian J. Biotechnology, 7: 133-136.
Pandey D. and Brown C. (2000). Teak: a global overview. Unasylva, 51: 3 -13.
Sage R.F. (2004). The evolution of C4 photosynthesis. New Phytologist, 161: 341–370.
Tewari D.N. (1992). A monograph on teak (Tectona grandis L. f.). International Book Distributors, Dehradun, India.
Tiwari A., Kumar P., Chawhann P.H., Singh S. and Ansari S.A. (2006). Carbonic anhydrase in Tectona grandis: Kinetics,stability, isozyme analysis and relationship with Photosynthesis. Tree Physiology, 26: 1067-1079.
Vaishnaw V., Mohammad N., Wali S.A., Kumar R., Tripathi S.B., Negi M.S. and Ansari S. A. (2014). AFLP markers for analysis of genetic diversity and structure of teak (Tectona grandis) in India. Canadian J. Forest Research, DOI: 10.1139/cjfr-2014-0279
Verhaegen D., Fofana I.J., Logossa Z.A. and Ofori D. (2010). What is the genetic origin of teak (Tectona grandis L.) introduced in Africa and Indonesia? Tree Genetics & Genomics, 6: 717-733.
Yoon M.Y., Moe K.T., Kim D.Y., Il-Rae Rho S., Kim K.T.K., Won M.K., Chung J.W. and Park Y.J. (2012). Genetic diversity and population structure analysis of strawberry (Fragaria 9 ananassa Duch) using SSR markers. Electronic J. Biotechnology, 15:2
Zehdi-Azouzi S., Cherif E., Moussouni S., Gros-Balthazard M., Abbas Naqvi S., Ludena B., Castillo K., Chabrillange N., Bouguedoura N., Bennaceur M., SiDehbi F., Abdoulkader S., Daher A., Terral J.F., Santoni S., Ballardini M., Mercuri A., Ben Salah M., Kadri K., Othmani A., Littardi C., Salhi-Hannachi A., Pintaud, J.C. and Aberlenc-Bertossi F. (2015). Genetic structure of the date palm (Phoenix dactylifera) in the Old World reveals a strong differentiation between eastern and western populations. Annals of Botany, 116: 101–112.
Zhang L., Lu S., Sun D. and Peng J. (2015). Genetic variation and geographical differentiation revealed using ISSR markers in tung tree, Vernicia fordii . J. Genetics, 94: e5-e9.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Unless otherwise stated, copyright or similar rights in all materials presented on the site, including graphical images, are owned by Indian Forester.