GIS Based Forest Fire Vulnerability Assessment and its Validation using field and MODIS Data: A Case Study of Bhaderwah Forest Division, Jammu and Kashmir (India)
DOI:
https://doi.org/10.36808/if/2021/v147i2/153779Keywords:
Multicriteria Analysis, Geographic Information System, Vulnerability, MODIS.Abstract
The present study assesses the forest fire vulnerability of the Bhaderwah forest division in the UT of Jammu and Kashmir. The vibrant green forests of the Bhaderwah forest division play an essential role in preventing soil erosion, maintaining the ecological balance and serves as habitat for wildlife. In efforts to nurture the rich biodiversity, it is essential to manage this forest division using modern scientific technology for fire protection. The present study makes the use of MODIS fire data related to the field point data of forest fires in a multi-criteria analysis (MCA) framework to assess the fire vulnerability of Bhaderwah Forest Division using Geographical Information System (GIS). In the present study, land use, vegetation, topographical parameters, and human influence parameters are used as inputs to the multi-criteria analysis for dividing the study area based on sensitivity to forest fires. The outcome from the present study reports that out of the total 342 compartments of Bhaderwah Forest Division, 187 compartmentsfall in high vulnerability zone, 123 compartmentsfall in medium vulnerability zone, whereas only 32 compartments fall in low vulnerability zone. The present study can be constructive in formulating better strategies to combat forest fires in the area.
References
Adab H., Kanniah K.D. and Solaimani K. (2013). Modeling Forest fire in the Northeast of Iran using Remote Sensing and GIS techniques, Natural Hazards, 65: 1723-1743.
Adinarayana J. (2003). Spatial decision support system for identifying priority sites for watershed management schemes. In: Proceeding: 1st Interagency Conference on Research in the watersheds (ICRW). 27-30 October 2003. U.S. Department of Agriculture, Agricultural Research Service, Benson Arizona, (USA).
Ahlgren I.F. and Ahlgren C.E. (1960). Ecological effects of forest fires. Bot. Rev., 26: 483-533. Doi.rg/10.1007/BF02940573
Ajin R.S., Loghin A.M., Vinod P.G. and Krishnamurthy R.R. (2016). The risk assessment of potential forest fire in Idukki Wildlife Sanctuary using Remote Sensing & GIS techniques. International Journal of Advanced Earth Science Engineering, 5:308-18.
Altaf S., Meraj G. and Romshoo S.A. (2014). Morphometry and land cover based multi criteria analysis for assessing the soil erosion susceptibility of the western Himalayan Watershed. Environmental Monitoring Assessment, 186: 8391-8412.
Allen C.D., Macalady A.K., H. Chenchouni., D. Bachelet and N. Mcdowell (2010). A global overview of drought and heatinduced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage, 259: 660-684.
Anderson H.E. (1982). Aids to determining fuel models for estimating fire behavior. U S Department of Agriculture, Forest Service. Intermountain Forest and Range Experiment Station, Ogden UT 84401.
Badarinath K.V.S., Sharma A.R. and Kharol S.K. (2011). Forest fire monitoring and burnt area mapping using satellite data. A study over the forest region of Kerala state, India. Int. J. Remote Sens., 32: 85-102.
Beig M.A., Dar G.H., Ganai N.A. and Khan N.A. (2008). Mycorrhizal biodiversity in Kashmir forests and some new records of macrofungi from J&K state. Applied Biol. Res., 10: 26-30
Bhat F., Mahajan D.M. and Bhat A. (2015). Assessment of anthrogenic activities and exotic flora of Lobal valley, Kashmir, India. Int. J. Bioassays, 4: 4483-4491.
Boubel R.W., Vallero D., Fox D.L., Turner B. and Stern A.C. (2013). Fundamentals of Air Pollution. Elsevier, New York., ISBN: 978-0121189303, pages: 574.
Calle A., Casanova J.L. and Romo A. (2006). Fire detection and monitoring using MSG spinning Enhanced Visible and Infrared Imager (SEVIRI) data. J. Geophys. Res: Biogeosci., 111, No. G4. 10.1029/2005JG000116.
Castro Chuveico E. (1998). Modelling Forest Fire Danger from Geographic Information Systems. Geocarto International, 13(1): 15-23.
Chuvieco E. and R.G. Congalton (1989). Application of the remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens. Environ., 29: 147-159.
Chuvieco E., Aguado I. and Dimitrakopoulos A.P. (2004). Conversion of fuel moisture content values to ignition potential for integrated fire danger assessment. Can. J. For. Res., 34:2284-2293.
Clarke K.C., Brass J.A. and Riggan P.J. (1994). A cellular automation model of wildfire propagation and extinction., Photogram. Eng. Remote Sens., 60: 1355-1367.
Dadhwal V.K., Kushwaha S.P.S. and Nandy S. (2009). Monitoring forests for sustainability: Remote Sensing studies in India. In: Proceeding: CAETS convocation, 12 November, 2009. Calgary.
Dale V.H., Joyce L.A., Mcnulty S., Neilson R.P. and Ayres M.P. (2001). Climate change and forest disturbances: Climate change can affect forests by altering the frequency, intensity, duration and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms or landslides., Bioscience, 51: 723-734.
Davies D.K., llavajhala S., Wong M.M. and Justice C.O. (2009). Fire information for resource management system: Archiving and distributing MODIS active fire data. IEEE Trans. Geosci. Remote Sens., 47: 72-79.
De Bano. L.F., Neary D.G. and Ffolliott P.F. (1988). Fire effects on Ecosystems. Jhon Wiley and Sons, New York, ISBN: 978-0-471-16356-5. 352 pp.
Fernandes P.M. and Botelho H.S. (2003). A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire, 12: 117-128.
Foody G.M. (2002). Status of land cover classification assessment. Remote Sens Environ, 80(1): 185-201.
Framing G.D. (2002). Fires: A country by country analysis of forest and land fires in the ASEAN nations. Project fire fight south east Asia, Jakarta.
Franklin S.E. (2001). Remote sensing for sustainable forest Management. CRC Press, Florida.
Fu K.S. (1990). Pattern recognition in remote sensing of the earth resources, IEEE Transactions on Geosciences Electronics, 14(1): 10-18.
Ganteaume A., Camia A., Jappiot M., San-Miguel Ayanz J., Long-Fournel M. and Lampin C. (2013). A review of the main driving factors of the forest fire ignition over Europe. Environ. Manage., 51: 651-662.
Gupta A.K. and Kaushik A.D. (2012). Managing fires and pests in Forestry: Approach to Ecosystem Health. In: Ecosystem Approach to Disaster Risk Reduction, Gupta A.K. and S.S. Nair (Eds)., National Institute of Disaster Management, New Delhi, India, pp: 121-136.
Gili J.A, Corominas J. and Rius J. (2000). Using Global Positioning system techniques in landslide monitoring. Eng. Geol., 55: 167-192.
Giri C., Pengra B., Long J. and Loveland T.R. (2013). Next generation of global land cover characterization, mapping and monitoring. Int. J. Applied Earth Obsev. Geoinform., 25: 30-37.
Hanson P.J. and Weltzin J.F. (2000). Drought disturbance from climate change: Response of the United States forests. Sci. Total Environ., 262: 205-220.
Hernandez Leal P.A., Arbelo M. and Gonzalo Calvo A. (2006). Fire Risk Assessment using Satellite data. Advances in Space Research. 37: 741-746.
Hyndman D. and Hyndman D. (2016). Natural hazards and th disasters. 5 edn., Cengage Learning, UK.
Jain A., Ravan S.A., Singh R.K., Das K.K. and Roy P.S. (1996). Forest fire risk modeling using remote sensing and GIS. Curr. Sci. 70 (10): 928-933.
Goldammer Johann G. (1999). Ecology-Forests on fire Science 284(5421): 1782a-1783. DOI: 10.1126/science.284.5421.1782a.
Kasischke E.S., Hewson J.H., Strocks B., Van der Werf G. and Randerson J. (2003). The use of ATSR active fire counts for estimating relative patterns of biomass burning-A study from boreal forest region. Geophys. Res. Lett., Vol. 30, No.18.10.1029/2003GL017859.
Kasischke E.S., Williams D. and Barry D. (2002). Analysis of the patterns of large fires in the boreal forest region of Alaska, Int. J. Wildland Fire, 11: 131-144.
Keane R.E., Burgan R. and Van Wagtendonk J. (2001). Mapping Wildland fuels for fire management across multiple scale: Integrating remote sensing, GIS and biophysical modeling., Int. J. Wildland Fire, 10: 301-319.
Kushla J.D. and Ripple W.J. (1997). The Role of Terrain in a Fire Mosaic of a Temperate Coniferous Forest., Forest Ecology and management, 95: 97-107.
Laurance W.F. (1998). A crisis in the making: Responses of Amazonian forests to land use and climate change. Trends Ecol. Evol., 13: 411-415.
Lazaridis M., Latos M., Aleksandro V., Hov O., Papayannis A. and Torseth K. (2008). Contribution of forest fire emissions to atmospheric pollution in Greece. Air Qual. Atmos. Health, 1: 143-158.
Li T. (1998). Forest Fire Risk Influencing factors and Types (in Chinese), Journal of the Chinese Peoples Armed Police force Academy. 4: 31-33.
Lui Y., Stanturf J. and Goodrick S. (2010). Trends in global wildfire potential in a changing climate. For Ecol. Manage., 259: 685-697.
Malik T., Rabbani G. and Farooq M. (2013). Forest fire risk zonation using remote sensing and gis technology in Kansrao forest range of Rajaji National Park, Uttarakhand, India. Int. J. Adv. Remote Sens. GIS., m 1: 86-95.
Maselli F. (2004). Monitoring forest conditions in a protected Mediterranean coastal area by the analysis of multiyear NDVI data. Remote Sens. Environ., 89: 423-433.
Meraj G., Romshoo S.A., Yousuf A.R., Altaf S. and Altaf F. (2015). Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Nat Hazards. DOI 10.1007/s11069-015-1605-1.
Mitchell R.J., Liu Y., Brein J.j.O., Elliott K.J., Starr G., Miniat C.F. and Hiers J.K. (2014). Future climate and fire interactions in the Southeastern region of the United States. For. Ecol.Manage., 327: 316-326.
Mortan J.C. (2007). Image analysis, classification and change detection in remote sensing, with algorithms for ENVI/IDL. CRC press, Taylor and Francis Group.
Murphy P.J., Mudd J.P., Stocks B.J., Kasischke E.S., Barry D., Alexander M.E. and French N.H. (2000). Historical fire records in the North America Boreal Forest. In: Fire, Climate Change and carbon Cycling in the Boreal Forest, Kasischke, E.S and B.J. Stocks (Eds.)., Springer, New York, pp:274-288.
Murtaza K.O. and Romshoo S.A. (2014). Determining the suitability and accuracy of various statistical algorithms for satellite data classification. International Journal of Geomatics Geosciences 4(4): 585-599.
Nobre C.A., Sellers P.j. and Shukla J. (1991). Amazonian defoerestation and refional climate change. J. Climate, 4: 957-988.
Negi S.S. (1986). A Handbook of forestry. International Book Distributors, Dehradun, India.
Pettorelli N., Laurance W.F., Brien T.G. O., Wegmann M., Nagendra H. and Turner W. (2014). Satellite remote sensing for applied ecologists: Opportunities and challenges, J. Applied Ecol., 51: 839-848.
Podur J.J. and Martell D.L. (2009). The influence of weather and fuel type on the composition of the area burned by forest fire in Ontario, 1996-2006. Ecol. Applic., 19: 1246-1252.
Rather M.A., Farooq M., Meraj G., Dada M.A., Sheikh B.A. and Wani I.A. (2018). Remote sensing and GIS based forest fire vulnerability assessment in dachigam national park, North Western Himalaya. Asian J. Applied Sci., DOI: 10.3923/ajaps.
Rather M.A., Kumar J.S., Farooq M. and Rashid H. (2017). Assessing the influence of watershed characteristics on soil erosion susceptibility of Jhelum basin in Kashmir Himalayas. Arabian J. Geosci., Vol 10, No.3.10.1007/s12517-017-2847-x.
Rupam K. and Dolon K. (2001). Woodfuel characteristics of some woody species of north east India. Biomass and bioenergy, 20(1): 17-23. DOI: 10.1016/S0961-9534(00)00060-X.
Ryan K.C., Knapp E.E. and Varner J.M. (2013). Prescribed fire in North American forests and Woodlands: History, Current practice and challenges. Front. Ecol. Environ., 11: e15-e24.
Saigal P.M. (1989). A suggested classification of forest fires in India by types and causes. In: Proceedings of the national seminar on forest fires fighting, Kulamaru, Kerala, India 2-3 November 1989.
Sen Z. and Habib Z. (2000). Spatial Precipitation Assesment with Elevation by using Point Cumulative Semivariogram Technique. Water Resource management. 14: 311-325.
Singh A.K. (2007). Geoinformatics Applications in Agriculture. 1st Edn., NIPA., India.
Smith W.H. (2012). Air pollution and forests: Interactions between Air Contaminants and forest ecosystem. Springer Science and Business Media, New York, ISBN: (978-1-4684 0104-2, pages 360.
Tucker G.E. and Bras R.L. (1998) Hill slope processes, drainage density and landscape morphology. Water Resource 34(10): 2751-2764.
Tarboton D.G. (1989). The Analysis of River Basins and Channel Networks Using Digital Terrain Data, Thesis, M.I.T., Cambridge MA.
Tatli H. and Turkes M. (2014). Climatological Evaluation of Haines forest fire weather index over the Mediterranean Basin. Meteorol. Applic., 21: 545-552.
Turner B L.I.I., Mayer W.B. and Skole D.L. (1994). Global Land use and land cover change, Towards an integrated programme of the study, Ambio. 23(1): 91-95.
Westerling A.L, Hidalgo H.G., Cayan D.R. and Swetnam T.W. (2006). Warming and earlier spring increase western US forest wildfire activity. Science, 313: 940-943.
Yin H., Kong F. and Li X. (2004). Remote Sensing and GIS Based Forest Fire Risk Zone Mapping in DA Hinggan Mountains. Chinese Geographical Science, 14(3) 251-257.
Downloads
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Unless otherwise stated, copyright or similar rights in all materials presented on the site, including graphical images, are owned by Indian Forester.