Radial Variation of Wood Density in Pinus kesiya Royle ex Gordon

Radial Variation of Wood Density in Pinus kesiya Royle ex Gordon

Authors

  •   B.R. Gogoi   Wood Science and Forest Products Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology Nirjuli-791109, Arunachal Pradesh
  •   M. Sharma   Wood Science and Forest Products Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology Nirjuli-791109, Arunachal Pradesh
  •   C.L. Sharma   Wood Science and Forest Products Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology Nirjuli-791109, Arunachal Pradesh

DOI:

https://doi.org/10.36808/if/2020/v146i8/154858

Keywords:

Wood density, Radial variation, Correlation, Growth rate

Abstract

The present study was carried out at breast-height cross-sectional discs collected from pine forest of Jaintia Hills of Meghalaya. The aims of the study were (a) to determine wood density variations from pith to bark and (b) to see the relationship of wood density with age, distance from pith, ring width and growth rate by using simple linear and multiple linear regression models. It was observed that wood density increased irregularly from pith to bark. Age and distance from pith exhibited positive and highly significant relationship with wood density for all trees and pooled data whereas ring width and growth rate were negatively and significantly related with wood density The multiple linear regression model obtained with these variables indicated that both age and ring width are the best predictors of wood density

References

Alteyrac J., CloutierA., Ung C.H. and Zhang S.Y. (2006). Mechanical properties in relation to selected wood characteristics of black spruce. Wood Fib. Sci., 38(2): 229-237.

Auty D., AchimA., Macdonald E., Cameron A.D. and Gardiner B.A. (2014). Models for predicting wood density variation in Scots pine. Fores., 87(3): 449-458.

Bala M. and Seth M.K. (1992). Radial pattern of wood density variation from pith to bark in Cedrus deodara (Roxb.) Loud. Dre.Vys., 132:11-20.

Beets RN., Kimberley M.O. and McKinley R.B. (2007). Predicting wood density of Pinus radiata annual growth increments. New Zeal. J. For. Sci, 37(2): 241-266.

Bouriaud O., Breda N., Le Moguedec G. and Nepveu G. (2004). Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees, 18(3): 264-276.

Burley J. (1970). Variation in wood properties of Pinus kesiya Royle ex Gordon (syn. P. khasya Royle; P. insularis Endlicher); eighteen trees of Burma provenance grown in Zambia. Wood Sci Tech. 4(4): 255-266.

Burley J. and Andrew I.A. (1970). Variation in wood properties of Pinus kesiya Royle ex Gordon (syn. P khasya Royle; P insularis Endlicher); six trees of Assam provenance grown in Zambia. WoodSa. Tech., 4(3): 195-212.

Chave J., Coomes D., Jansen S., Lewis S.L., Swenson N.G. and Zanne A.E. (2009). Towards a worldwide wood economics spectrum. Eco. Lett., 12: 351-366.

Clark A., Daniels R.F. and Jordan L. (2006). Juvenile/mature wood transition in loblolly pine as defined by annual ring specific gravity, proportion of latewood, and microfibril angle. W/oodF&.Sci., 38(2): 292-299.

DeBell D.S., Singleton R., Gartner B.L. and Marshall D.D. (2004). Wood density of young-growth westem hemlock relation to ring age, radial growth, stand density and site quality Can. J. For Res., 34(12): 2433-2442.

Deng X., Zhang L., Lei R, Xiang W. and Yan W. (2014). Variations of wood basic density with tree age and social classes in the axial direction within Pinus massoniana stems in Southem China. Ann. For Sci., 71(4): 505-516.

Fujimoto T, Kita K. and Kuromaru M. (2008). Genetic control of intra-ring wood density variation in hybrid larch {Larix gmelinii var Japonica X L. kaempferi) F1. Wood Sci Tech., 42(3): 227-240.

Gapare W.J., Wu H.X. and Abarquez A. (2006). Genetic control of the time of transition from juvenile to mature wood in Pinus radiata D. Don. Ann. For Sci., 63(8): 871-878.

Gogol B.R., Sharma M., Sharma C.L. (2017). Intra-ring wood density variations in khasi pine {Pinus kesiya Royle ex Gordon). Int J. Acad. Res. Dev., 2(5): 422-427.

Gryc V, Vavrcik H. and Hom K. (2011). Density of juvenile and mature wood of selected coniferous species. J. For Sci., 57(3): 123-130.

Hashemi S.K. and Kord B. (2011). Variation of within-stem biometrical and physical property indices of wood from CupressussempenrensL. Biores., 6(2): 1843-1857

IBM. (2009). SPSS Inc. Released 2009. PASW Statistics for Windows, Version 18.0. Chicago: SPSS Inc.

Jyske TH., Makinen H. and Saranpaa P (2008). Wood density within Norway spruce stems. Silva Fenn., 42: 439-455.

Kiaei M., Khademi-Eslam H., HemmasA.H. and SamarihaA. (2012). Ring width, physical and mechanical properties of Eldar Pine (Case Study on Marzanabad Site). Cell. Chem. Tech., 46(1-2): 125-135.

Kimberley M.O., Cown D.J. McKinley R.B., Moore J.R. and Dowling L.J. (2015). Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine. . New Zeal. J. For Sci., 45: 1-22.

Koga S. and Zhang S.Y (2001). Relationships between wood density and annual growth rate components in balsam fir {Abies balsamea). Wood Fib. Sci., 34(1): 146-157.

Koga S. and Zhang S.Y (2004). Inter-tree and intra-tree variations in ring width and wood density components in balsam fir (/ft/esfta/samea). Wood Sd. Tech., 38(2): 149-162.

Lin C.J. and Lin FC. (2013). Ring characteristics of 95-year old Japanese cedar plantation trees grown in Taiwan. Sci Res. Ess., 8(8): 315-324.

Melo R.R. (2015). Radial and longitudinal variation of P/nus taeda L. wood basic density in different ages. Revista de CienciasAgrarias Amazon. J. Agri. Env. Sci., 58(2): 192-197.

Melo R.R., Silvestre R., Oliveira T.M. and Pedrosa T.D. (2013). Radial and axial variation of the Pinus elliottii Engelm. wood density with different ages. Ciencia da Madeira, Braz. J. Wood Sci., 4{n 83-92.

Missanjo E. and Matsumura J. (2016). Wood density and mechanical properties of Pinus kesiya Royle ex Gordon in Malawi. Fores., 7(7): 135; https://doi.org/10.3390/f7070135.

Nawrot M., Pazdrowski W., Walkowiak R., Szymahski M. and Kazimierczak K. (2014). Analysis of coniferous species to identify and distinguish juvenile and mature wood. J. For. Sci., 60(4): 143-153.

Origin Lab Corp. 2007/10 Origin 8, Northampton, MA Panshin A.J. and de Zeeuw C. (1980). Textbook of wood technology McGraw-Hill, New York, USA, 722p.

ParkY.I.D., Koubaa A., Brais S. and Mazerolle M.J. (2009). Effects of cambial age and stem height on wood density and growth of jack pine grown in boreal stands. Wood Fib. Sci., 41(4): 346-358.

Petty J.A., Macmillan D.C. and Steward CM. (1990). Variation of density and growth ring width in stems of sitka spruce and norway spruce. For., 63(1): 39-49.

Sadegh A.N. and Kiaei M. (2011). Formation of juvenile/ mature wood in Pinus eldarica med. and related wood properties. WorldApp. Sci. Jour. 12(4): 460-464.

Saranpaa P (2003). Wood density and growth. In J.R. Bamet and G. Jeronimidis (Eds.), Wood quality and its biological basis. Boca Raton, FL: CRC Press, 87 -118 pp.

Seth M.K., Lai C. and Bala M. (1988). Radial pattem of whole-ring specific gravity variation from pith to bark at several successive heights in blue pine {Pinus wallichiana A.B. Jackson). Indan Forester, 114(5): 275 - 284.

Sharma M.B. and Sharma C.L. (2007). Juvenile wood versus mature wood densities in Cedrus deodara (Roxb.) Loud. Indian Forester, 133(2): 247-251.

Smith D.M. (1955).Acomparison of two methods for determining the specific gravity of small samples of secondary growth, Douglas fir U.S. For Prod. Lab. Report No. 2033.

Srivastava R.K. and Bahar N. (2007). Pines of south-east Asia. Intemational Book Distributors, 272p.

Udoakpan U.I. (2013). An evaluation of wood properties of Pinus caribeae (Morelet) in Oluwa Forest Reserve, Ondo State, Nigeria. Ethiop. J. Env. Stu. Mgmt, 6(2): 159-169.

Via B.K., Shupe T.F, Groom L.H., Stine M. and So C.L. (2003). Multivariate modelling of density strength and stiffness from near infrared spectra for mature, juvenile and pith wood of longleaf pine {Pinus palustris). J. Near Infra. Specf., 11(5): 365-378.

Zobel B.J. and Jett J.B. (1995). Genetics of wood production. Springer-Verlag, Berlin, 333p.

Zobel B.J. and van Buijtenen J.P (1989). Wood variation, its causes and control. Springer, Berlin, 363p.

Downloads

Download data is not yet available.

Published

2020-08-07

How to Cite

Gogoi, B., Sharma, M., & Sharma, C. (2020). Radial Variation of Wood Density in <i>Pinus kesiya</i> Royle ex Gordon. Indian Forester, 146(8), 730–735. https://doi.org/10.36808/if/2020/v146i8/154858

Issue

Section

Articles
Loading...