Predicting the Potential Geographical Distribution of Medicinal Plant (Taxus baccata, L. subsp. Wallichiana) in Shimla District, Himachal Pradesh

Predicting the Potential Geographical Distribution of Medicinal Plant (Taxus baccata, L. subsp. Wallichiana) in Shimla District, Himachal Pradesh

Authors

  •   Aman Kumar   NWFP Discipline, Forest Research Institute, Dehradun, Uttarakhand, 248006
  •   A. K. Sharma   NWFP Discipline, Forest Research Institute, Dehradun, Uttarakhand, 248006
  •   Rajesh Kumar   National Statistical Office, Dehradun, Uttarakhand, 248001

DOI:

https://doi.org/10.36808/if/2022/v148i1/157976

Keywords:

Taxus baccata, MaxEnt, Endangered, IDW, Conservation.

Abstract

The population of medicinal plant, Taxus baccata (Himalayan yew) is declining due to over harvesting of its bark and leaves, most wild populations are threatened and are endangered in the Himalaya. As a consequence, the species has already become endangered, facing risk of extinction soon. The present study has been conducted to predict the potential habitats for Taxus baccata in Shimla using the MaxEnt modeling. Through Multi-co linearity test only 19 variables along with 52 Spatio-temporally independent species occurrence locations were used for modeling. IDW method was used to interpolate the soil data. The result shows that the best AUC of 0.971 ± 0.015 was obtained when the model was set at 100 replication and 1000 iterations. The interpretation of variables revealed that, apart from climatic and topographic parameters, edaphic factor also has influential impact on the distribution of plant. The jackknife test shows that edaphic factor (phosphorus, carbon, nitrogen, pH), topographic and Environmental factor BIO14 (Precipitation of Driest Month) and BIO11 (Mean Temperature of Coldest Quarter) were the key predictor variables associated with its distribution. The success of this model could be promising in determining potential distribution of Himalayan yew and its reintroduction can be useful in the study of species ecology, biogeography, and conservation planning in the Himalaya.

References

Adhikari D., Barik S.K. and Upadhaya K. (2012). Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecological Engineering, 40, 37-43.

Araujo M.B. and Rozenfeld A. (2014). The geographic scaling of biotic interactions. Ecography, 37(5), pp.406-415.

Austin M. (2007). Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological modelling, 200(1-2):1-19.

Babar S., Amarnath G., Reddy C.S., Jentsch A. and Sudhakar S. (2012). Species distribution models: ecological explanation and prediction of an endemic and endangered plant species (Pterocarpus santalinusLf). Current Science, 1157-1165.

Barnosky A.D., Matzke N., Tomiya S., Wogan G.O., Swartz B., Quental T.B., Marshall C., McGuire J.L., Lindsey E.L., Maguire K.C. and Mersey B. (2011). Has the Earth's sixth mass extinction already arrived? Nature, 471(7336): 51-57.

Beane N.R., Rentch J.S. and Schuler T.M. (2013). Using maximum entropy modeling to identify and prioritize red spruce forest habitat in West Virginia. Research Paper NRS-23. Newtown Square, PA: US Department of Agriculture, Forest Service, Northern Research Station. 16 p., 23, pp.1-16.

Benito B.M., Martínez-Ortega M.M., Munoz L.M., Lorite J. and Penas J. (2009). Assessing extinction-risk of endangered plants using species distribution models: a case study of habitat depletion caused by the spread of greenhouses. Biodiversity and Conservation, 18(9): 2509-2520.

Bolker B. and Pacala S.W. (1997). Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theoretical population biology, 52(3): 179197.

Brummitt N.A. and Bachman S.P. (2010). Plants under pressure- a global assessment: the first report of the IUCN sampled red list index for plants. Kew, UK: Royal Botanic Gardens.

Elith J., H. Graham C., P. Anderson R., Dudík M., Ferrier S., Guisan A., J. Hijmans R., Huettmann F., R. Leathwick J., Lehmann A. and Li J. (2006). Novel methods improve prediction of species distributions from occurrence data. Ecography, 29(2): 129-151.

Elith J., Kearney M. and Phillips S. (2010). The art of modelling range-shifting species. Methods in ecology and evolution, 1(4), pp.330-342.

Elith J., Phillips S.J., Hastie T., Dudík M., Chee Y.E. and Yates C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1): 43-57.

Engler R., Guisan A. and Rechsteiner L. (2004). An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of applied ecology, 41(2): 263-274.

Esfanjani J., Ghorbani A. and Chahouki M.A.Z. (2018). MaxEnt Modeling for Predicting Impacts of Environmental Factors on the Potential Distribution of Artemisia aucheri and Bromus tomentellus-Festuca ovina in Iran. Polish Journal of Environmental Studies, 27(3): 1041-1047.

Ferrier S. (2002). Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Systematic biology, 51(2): 331-363.

Ferrier S., Watson G., Pearce J. and Drielsma M. (2002). Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling. Biodiversity & Conservation, 11(12): 2275-2307.

Franklin J. (2010). Mapping species distributions: spatial inference and prediction. Cambridge University Press.

FSI. (2019). India State of Forest Report, Forest Survey of India.

Gairola S., Sharma C.M., Ghildiyal S.K. and Suyal S. (2012). Regeneration dynamics of dominant tree species along an altitudinal gradient in moist temperate valley slopes of the Garhwal Himalaya. Journal of forestry research, 23(1): 53-63.

Gaston K.J. (1996). Spatial covariance in the species richness of higher taxa. Aspects of the genesis and maintenance of biological diversity, 221-242.

Ghosh A., Fassnacht F.E., Joshi P.K. and Koch B. (2014). A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. International Journal of Applied Earth Observation and Geoinformation, 26: 49-63.

Gotelli N.J., Graves G.R. and Rahbek C. (2010). Macroecological signals of species interactions in the Danish avifauna. Proceedings of the National Academy of Sciences, 107(11) : 5030-5035.

Graham C.H., Moritz C. and Williams S.E. (2006). Habitat history improves prediction of biodiversity in rainforest fauna. Proceedings of the National Academy of Sciences, 103(3): 632636.

Guisan A. and Thuiller W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology letters, 8(9): 993-1009.

Guisan A. and Zimmermann N.E. (2000). Predictive habitat distribution models in ecology. Ecological modelling, 135(2-3): 147-186.

Guisan A., Edwards Jr. T.C. and Hastie T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological modelling, 157(2-3): 89-100.

Gupta M.K. and Sharma S.D. (2009). Effect of tree plantation on soil properties, profile morphology and productivity index-II. Poplar in Yamunanagar district of Haryana. Ann. For., 17(1): 4370.

Hernandez P.A., Graham C.H., Master L.L. and Albert D.L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5): 773-785.

Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G. and Jarvis A. (2005). Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15): 19651978.

Hijmans R.J., Guarino L. and Mathur P. (2012). DIVA-GIS 7.5 Manual. University of California, California, 77p.

Ives A.R., Dennis B., Cottingham K.L. and Carpenter S.R. (2003). Estimating community stability and ecological interactions from time series data. Ecological monographs, 73(2): 301-330.

Jackson M.L. (1958). Soil chemical analysis. Prentice-hall, Englewood Cliffs, NJ. Journal of tropical forest science, 5(1): 35-43.

Jaynes E.T. (1957). Information theory and statistical mechanics. Physical. Review, 106(4): 620-630.

Juyal D., Thawani V., Thaledi S. and Joshi M. (2014). Ethnomedical properties of Taxus wallichianazucc. (Himalayan yew). Journal of traditional and complementary medicine, 4(3): 159-161.

Kumar S. and Stohlgren T.J. (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyricamonticola in New Caledonia. Journal of Ecology and natural Environment, 1(4): 94-98.

Lanker U., Malik A.R., Gupta N.K. and Butola J.S. (2010). Natural regeneration status of the endangered medicinal plant, Taxus baccata Hook. F. syn. T. wallichiana, in northwest Himalaya. International Journal of Biodiversity Science, Ecosystem Services & Management, 6(1-2): 20-27.

MÃ¥ren i.e., Karki S., Prajapati C., Yadav R.K. and Shrestha B.B.

(2015). Facing north or south: Does slope aspect impact forest stand characteristics and soil properties in a semiarid transHimalayan valley? Journal of arid environments, 121: 112-123.

Ortega-Huerta M.A. and Peterson A.T. (2008). Modeling ecological niches and predicting geographic distributions: a test of six presence only methods. Revista Mexicana De Biodiversidad, 79: 205-216.

P. Thomas and Lianming Gao (2018). Taxus contorta, from the w e b s i t e : ' T h r e a t e n e d C o n i f e r s o f T h e W o r l d ' (https://threatenedconifers.rbge.org.uk/conifers/taxuscontorta). Downloaded on 11 March 2021.

Pant S. and Samant S.S. (2008). Population ecology of the endangered Himalayan Yew in Khokhan Wildlife Sanctuary of North Western Himalaya for conservation management. Journal of Mountain Science, 5(3): 257-264.

PapeÅŸ M. and Gaubert P. (2007). Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Diversity and distributions, 13(6): 890-902.

Pearson R.G., Raxworthy C.J., Nakamura M. and Townsend Peterson A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of biogeography, 34(1), 102117.

Peterson A.T. (2003). Predicting the geography of species

invasions via ecological niche modeling. The quarterly review of biology, 78(4): 419-433.

Peterson A.T. (2006). Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics, 3: 59-72.

Peterson A.T., Papes M. and Kluza D.A. (2003). Predicting the potential invasive distributions of four alien plant species in North America. Weed Science, 51(6): 863-868.

Phillips S.J. and Dudík M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2): 161-175.

Phillips S.J., Anderson R.P. and Schapire R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4): 231-259.

Polak T. and Saltz D. (2011). Reintroduction as an ecosystem restoration technique. Conservation Biology, 25(3): 424-424.

Rathore P., Roy A. and Karnatak H. (2019). Modelling the vulnerability of Taxus wallichiana to climate change scenarios in South East Asia. Ecological Indicators, 102: 199-207.

Raxworthy C.J., Martinez-Meyer E., Horning N., Nussbaum R.A., Schneider G.E., Ortega-Huerta M.A. and Peterson A.T. (2003). Predicting distributions of known and unknown reptile species in Madagascar. Nature, 426(6968): 837-841.

Sahragard H.P., Ajorlo M. and Karami P. (2018). Modeling habitat suitability of range plant species using random forest method in arid mountainous rangelands. Journal of Mountain Science, 15(10): 2159-2171.

Sahragard H.P., Chahouki M.A.Z. and Gholami H. (2015). Predictive distribution models for determination of optimal threshold of plant species in central Iran. Range Management and Agroforestry, 36(2): 146-150.

Samant S.S. (1999). Diversity, nativity and endemism of vascular plants in a part of Nanda Devi Biosphere Reserve in west HimalayaI. Himalayan Biosphere Reserve (Biannual Bulletin), 1(1-2): 1-28.

Samant S.S., Dhar U. and Palni L.M.S. eds. (2002). Himalayan medicinal plants: potential and prospects (Vol. 14). Published for GB Pant Institute of Himalayan Environment & Development Kosi-Katarmal, Almora by Gyanodaya Prakashan.

Samant S.S., Dhar U. and Rawal R.S. (1998). Biodiversity status of a protected area in West Himalaya: Askot Wildlife Sanctuary. The International Journal of Sustainable Development & World Ecology, 5(3): 194-203.

Samant S.S., Joshi H.C., Pant S. and Arya S.C. (2001). Diversity, nativity and endemism of vascular plants of Valley of Flowers National Park. Himalayan Biosphere Reserves, 3(1-2): 1-17.

Sánchez-Mercado A.Y., Ferrer-Paris J.R. and Franklin J. (2010). Mapping species distributions: spatial inference and prediction. Oryx, 44(4): 615.

Saran S., Joshi R., Sharma S., Padalia H. and Dadhwal V.K. (2010). Geospatial modeling of Brown oak (Quercus semecarpifolia) habitats in the Kumaun Himalaya under climate change scenario. Journal of the Indian Society of Remote Sensing, 38(3): 535-547.

Shafique C.M., Barkati S. and Rizvi A. (2008). Study of environmental variables in the moist-temperate environs of western Himalayan mountain range, Pakistan. Records Zoological Survey of Pakistan, 18(53-60).

Sharma S., Arunachalam K., Bhavsar D. and Kala R. (2018). Modeling habitat suitability of Perilla frutescens with MaxEnt in Uttarakhand—A conservation approach. Journal of Applied Research on Medicinal and Aromatic Plants, 10: 99-105.

Singh K.J. and Thakur A.K. (2014). Medicinal plants of the Shimla hills, Himachal Pradesh: a survey. International Journal of Herbal Medicine, 2(2): 118-127.

Stohlgren T.J., Ma P., Kumar S., Rocca M., Morisette J.T., Jarnevich C.S. and Benson N. (2010). Ensemble habitat mapping of invasive plant species. Risk Analysis: An International Journal, 30(2): 224-235.

Su H.J. (1987). Forest habitat factors and their quantitative assessment. Quarterly Journal of Chinese Forestry, 20: 1–14.

Suzuki N., Olson D.H. and Reilly E.C. (2008). Developing landscape habitat models for rare amphibians with small geographic ranges: a case study of Siskiyou Mountains salamanders in the western USA. Biodiversity and Conservation, 17(9): 2197-2218.

Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus, B.F., De Siqueira, M.F., Grainger, A., Hannah, L. and Hughes, L. (2004). Extinction risk from climate change. Nature, 427(6970): 45-148.

Thuiller W., Richardson D.M., Pysek P., Midgley G.F., Hughes G.O. and Rouget M. (2005). Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale.

Global change biology, 11(12): 2234-2250. Upadhyay V.P., Singh J.S. and Meentemeyer V. (1989). Dynamics and weight loss of leaf litter in Central Himalayan forests: abiotic versus litter quality influences. The Journal of Ecology, 77(1): 147-161.

Vogel A.I. (1961). Quantitative organic analysis including elementary instrumental analysis, Longmans, New York.

Walkely A. and Black A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. soil science, 37(1): 29-37.

Wang W., Lo N., Chang W. and Huang K.Y. (2012). Modeling spatial distribution of a rare and endangered plant species (Brainea insignis) in central Taiwan. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 241-246.

Warren D.L., Glor R.E. and Turelli M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33(3): 607-611.

Wei B., Wang R., Hou K., Wang X. and Wu W. (2018). Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Global ecology and conservation, 16, p.e00477.

Wilde S.A., Voigt G.K. and Iyer J.G. (1964). Soil and plant analysis for tree culture. Oxford Publishing house, Calcutta, India.

Wisz M.S., Hijmans R.J., Li J., Peterson A.T., Graham C.H., Guisan A. and NCEAS Predicting Species Distributions Working Group, (2008). Effects of sample size on the performance of species distribution models. Diversity and distributions, 14(5): 763-773.

Yang X.Q., Kushwaha S.P.S., Saran S., Xu J. and Roy P.S. (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51: 83-87.

Zomer R.J., Bossio D.A., Trabucco A., Yuanjie L., Gupta D.C. and Singh V.P. (2007). Treesand water: smallholder agroforestry on irrigated lands in Northern India. International Water Management Institute. Colombo, Sri Lanka, 47p.

Zomer R.J., Trabucco A., Bossio D.A. and Verchot L.V. (2008). Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, ecosystems & environment, 126(12): 67-80.

URLs

https://biodiversityinformatics.amnh.org/open_source/maxent/ (Accessed 27 April, 2017)

https://earthexplorer.usgs.gov/ (Accessed on 13 November, 2019

https://cgiarcsi.community/data/global-aridity-and-petdatabase/ (Accessed on 19 November, 2019)

(https://www.worldclim.org/ (Accessed on 17 January, 2019)

Downloads

Download data is not yet available.

Author Biographies

Aman Kumar, NWFP Discipline, Forest Research Institute, Dehradun, Uttarakhand, 248006

NWFP discipline, Forest Research Institute, Dehradun, Uttarakhand, 248006, India

PH.D SCHOLAR

A. K. Sharma, NWFP Discipline, Forest Research Institute, Dehradun, Uttarakhand, 248006

Forest Research Institute, Dehradun, Uttarakhand, 248006, India

Rajesh Kumar, National Statistical Office, Dehradun, Uttarakhand, 248001

National Statistical Office, Dehradun, Uttarakhand, 248001, India

Published

2022-02-09

How to Cite

Kumar, A., Sharma, A. K., & Kumar, R. (2022). Predicting the Potential Geographical Distribution of Medicinal Plant (<i>Taxus baccata</i>, L. subsp. Wallichiana) in Shimla District, Himachal Pradesh. Indian Forester, 148(1), 72–82. https://doi.org/10.36808/if/2022/v148i1/157976

Most read articles by the same author(s)

1 2 3 > >> 
Loading...