Allometric Equations to Estimate Dry Biomass of Vachellia tortilis in Indira Gandhi Nahar Pariyojna area of Rajasthan

Allometric Equations to Estimate Dry Biomass of Vachellia tortilis in Indira Gandhi Nahar Pariyojna area of Rajasthan

Authors

  •   G. Singh   Arid Forest Research Institute, New Pali Road, Jodhpur-342005 (Rajasthan)
  •   B. Singh   Arid Forest Research Institute, New Pali Road, Jodhpur-342005 (Rajasthan)
  •   G.R. Choudhary   Arid Forest Research Institute, New Pali Road, Jodhpur-342005 (Rajasthan)
  •   S.R. Baloch   Arid Forest Research Institute, New Pali Road, Jodhpur-342005 (Rajasthan)
  •   N. Bala   Forest Research Institute, Dehradun (Uttarakhand)

DOI:

https://doi.org/10.36808/if/2022/v148i5/158183

Keywords:

Arid region, Allometric model, Biomass partitioning, Diameter class, Tree components.

Abstract

A massive plantation forests have been established in arid region of north western India for environmental, economic and livelihood benefits to the local people. However, their contribution to climate change mitigation is poorly understood, because of lack of allometric equations for biomass estimation. Objective of this study was to develop species-specific allometric models for estimating total, stem, branch, and leaf biomasses of Vachellia tortilis planted in western Rajasthan. Different linear and non-linear models were fitted to establish relationship between dry biomasses of different components of above-ground part of V. tortilis trees with diameter at breast height (DBH) and total height (H) and allometric equations were selected based on model performance statistics. Trees were 6.0-15.6 m tall, 10.50-54.10 cm in diameter, 19.0-773 kg tree-1 stem biomass, 28.0-2166 kg tree-1 branch biomass, 1.0-51.0 kg tree-1 leaf biomass and 58.0-2848 kg tree-1 total biomass. Model Y= a ExpbDBH was best fit with DBH and fulfilled the validation criterions with highest R2 and lowest residual error (σ), Akaike information criteria and root mean square error values. The value of adjusted R2 was >0.90 for the equations fitted on biomasses of different components except leaf biomass (adj. R2 = 0.46). Statistical variables of all components were highly significant (p<0.01) indicating the accuracy and precision of the equations. The developed biomass regression models can be applied as a species-specific equation in predicting standing biomass and carbon sequestration benefits of V. tortilis in north western India.

References

Agrawal A., Nepstad D. and Chhatre A. (2011). Reducing emissions from deforestation and forest degradation. Ann. Rev. Env. Resour., 36: 373-396.

Altanzagas B., Luo Y., Altansukh B., Dorjsuren C., Fang J. and Hu H. (2019). Allometric equations for estimating the aboveground biomass of five forest tree species in Khangai, Mongolia. http://dx.doi.org/10.3390/f10080661

Alvarez E., Duque A., Saldarriaga J., Cabrera K., de las-Salas G., del Valle I., Lema A., Moreno F., Orrego S. and Rodríguez L. (2012). Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manage., 267: 297-308.

Aneseyee A.B., Soromessa T., Elias E. and Feyisa G.L. (2021). Allometric equations for Ethiopian Acacia species. Carbon Balance and Management, https://assets.researchsquare.com/ files/rs143599/v1_stamped.pdf.

Basuki T.M., van Laake P.E., Skidmore A.K. and Hussin Y.A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Eco. Manag., 257: 1684–1694.

Brown S. (1997). Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper-134. Food and Agriculture Organization of the United Nations, Rome.

Chave J., Réjou-Méchain M., Búrquez A., Chidumayo E., Colgan M.S., Delitti W.B.C., Duque A., Eid T., Fearnside P.M., Goodman M.H.R.C., Martínez-Yrízar A., Mugasha W.A., Muller-Landau H.C., Mencuccini M., Nelson B.W., Ngomanda A., Nogueira E.M., Ortiz-Malavassi E., Pélissier R., Ploton P., Ryan C.M., Saldarriaga J.G., Vieilledent G. (2014). Improved pantropical allometric models to estimate the above ground biomass of tropical forests. Glob Change Biol., doi:10.1111/gcb.12629

Daba D.E. and Soromessa T. (2019). The accuracy of speciesspecific allometric equations for estimating aboveground biomass in tropical moist montane forests: case study of Albizia grandibracteata and Trichilia dregeana. Carbon Balance Manag., 14: 18. https://doi.org/10.1186/s13021-019-0134-8.

Guedes B.S., Sitoe A.A. and Olsson B.A. (2018). Allometric models for managing lowland miombo woodlands of the Beira corridor in Mozambique. Global Ecol. Cons., 13: p. e00374.

Henry M., Bombelli A., Trotta C., Alessandrini A., Birigazzi L., Sola G., Vieilledent G., Santenoise P., Longuetaud F., Valentini R., Picard N. and Saint-André L. (2013). GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. For. Biogeosci., 6: 326–330.

Henry M., Picard N., Trotta C., Manlay R.J., Valentini R., Bernoux M. and Saint-André L. (2011). Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fennica, 45(3B): 477-569. http://dx.doi.org/ 10.4172/2157-7625.1000116.

Jain R.C., Tripathi S.P., Kishan Kumar V.S. and Kumar S. (1996). Volume table for Acacia tortilis plantations based on data collected from KJD Abadi plantation of Kahuwala Range Chattargarh Division, IGNP area Rajasthan. Indian Forester, 122: 316-322.

Manzo Q.L., Moussa M., Issoufou H.B., Abdoulaye D., Morou B., Youssifi S., Mahamane A. and Paul R. (2015). Equations allométriques pour l'estimation de la biomasse aérienne de Faidherbia albida (Del.) Achev dans les agrosystèmes d'Aguié, Niger. Int. J. Biol. Chem. Sci., 9(4): 1863-1874.

Ngomanda A., Engone-Obiang N.L., Lebamba J., Moundounga Mavouroulou Q., Gomat H., Mankou G.S., Loumeto J., Midoko Iponga D., Kossi Ditsouga F., Zinga Koumba R., Botsika Bobé K.H., Mikala Okouyi C., Nyangadouma R., Lépengué N., Mbatchi B. and Picard N. (2014) Site-specific versus pantropical allometric equations: which option to estimate the biomass of a moist central African forest? For. Ecol. Manag., 312: 1-9.

Poorter H., Jagodzinski A.M., Ruiz-Peinado R., Kuyah S., Luo Y., Oleksyn J., Usoltsev V.A., Buckley T.N., Reich P.B. and Sack L. (2015). How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 208(3): 736-749.

Salunkhe O., Khare P.K., Kumari R. (2018). A systematic review on the aboveground biomass and carbon stocks of Indian forest ecosystems. Ecol Process, 7: 17. https://doi.org/10.1186/ s13717-018-0130-z.

Singh G. (2004). Growth, biomass production and soil water dynamics in relation to habitat and surface vegetation in hot arid region of Indian desert. Arid Land Res. Manag., 18(2): 153-169.

Singh G. (2005). Carbon sequestration under an agrisilvicultural system in the arid region. Indian For., 131(4): 543552.

Singh G. (2014). Studies on carbon sequestration in different forest types of Rajasthan. Arid Forest Research Institute, Jodhpur. Project Concluding Report submitted to Indian Council of Forestry Research and Education, Dehradun.

Singh G. and Mishra D.K. (2018). Compensatory afforestation in Rajasthan: An evaluation. Scientific Publisher (India), Jodhpur. 570p.

Singh G. and Rathod T.R. (2002). Plant growth, biomass production and soil water dynamics in a shifting dune of Indian desert. For. Ecol. Manag., 171: 309-320.

Singh G., Singh B., Tomar U.K., Sharma S. (2017). A Manual for Dryland Afforestation and Management. Jodhpur: Scientific Publisher (India), p. 605.

Singh G., Singh B., Kuppusamy V. and Bala N. (2002). Variations in foliage and soil nutrient composition in different age classes Acacia tortilis plantation. Indian For., 128: 514522.

Singh V., Tewari A., Kushwaha S.P.S. and Dadhwal V.K. (2011). Formulating allometric equations for estimating biomass and carbon stock in small diameter trees. For. Ecol. Manag., 261: 1945–1949.

UNFCCC (United Nations Framework Convention on Climate Change) (2008). Report of the Conference of the Parties on its thirteenth session, held in Bali from 3 to 15 Dec. 2007. Addendum, Part 2. Document FCCC/CP/2007/6/Add.1. UNFCCC, Bonn, Germany.

Upadhyaya A.K. (1991). Shelterbelt plantations effectively check sand deposition in Indira Gandhi Canal. Ind. For., 117(7):511-514.

Vashum K.T. and Jayakumar S. (2012). Methods to estimate above-ground biomass and carbon stock in natural forests - a review. J. Ecosyst. Ecogr., 2(4): 1-7.

Zhang H., Wang K., Xu X., Song T., Xu Y. and Zeng F. (2015). Biogeographical patterns of biomass allocation in leaves, stems and roots in China's forests. Sci Rep., 5: 15997, doi.org/10.1038/srep15997.

Downloads

Download data is not yet available.

Author Biography

G. Singh, Arid Forest Research Institute, New Pali Road, Jodhpur-342005 (Rajasthan)

Head, Division of Forest Ecology and Climate Change

Downloads

Published

2022-07-05

How to Cite

Singh, G., Singh, B., Choudhary, G., Baloch, S., & Bala, N. (2022). Allometric Equations to Estimate Dry Biomass of <i>Vachellia tortilis</i> in Indira Gandhi Nahar Pariyojna area of Rajasthan. Indian Forester, 148(5), 532–538. https://doi.org/10.36808/if/2022/v148i5/158183

Most read articles by the same author(s)

1 2 3 4 5 > >> 
Loading...