Stem Volume Allometric Equation of Acacia auriculiformis A. Cunn. Ex benth : Applicability of Digital Photography with Image Analysis as a Non-Destructive Approach

Stem Volume Allometric Equation of Acacia auriculiformis A. Cunn. Ex benth : Applicability of Digital Photography with Image Analysis as a Non-Destructive Approach

Authors

  •   Tasmia Farhana   Forestry and Wood Technology Discipline, Khulna University, Khulna-9208
  •   Md. Rafikul Islam   Erasmus Mundus Master on Mediterranean Forestry and Natural Resources Management, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon
  •   Tamjid Hasan   Forestry and Wood Technology Discipline, Khulna University, Khulna-9208
  •   Md. Salim Azad   Graduate School of Agriculture, Kyoto University, Kyoto, 606-8501
  •   Abdus Subhan Mollick   Forestry and Wood Technology Discipline, Khulna University, Khulna-9208
  •   Nabiul Islam Khan   Forestry and Wood Technology Discipline, Khulna University, Khulna-9208

DOI:

https://doi.org/10.36808/if/2023/v149i4/166420

Keywords:

Allometric Equation, Stem Volume, Digital Photography, Image Analysis, Regression.

Abstract

Accurate estimate of stem volume is crucial to forest management. In this study, we developed allometric equations of stem volume of Acacia auriculiformis after destructive harvesting of 48 individual trees. We also took digital photographs of each sample tree just before destructive harvesting from the felling operations of Bangladesh Forest Department in short rotation (10-15 years) plantations. The aim of this study was to know the accuracy of the results obtained through image analysis in comparison with true values and to develop the best stem volume regression model of this species. The best-fit stem volume equation performed well when fitted against a set of different samples collected for field validation. There was a strong linear relationship between 'image stem volume' to 'true stem volume' (R2 = 0.959) suggesting the applicability of the digital photography method to derive stem volume allometric equations. The findings of this study may be potentially used for obtaining stem volume allometric equations on other precious species, where destructive harvest is not permitted. The results of this study have implications on estimation of tree level biomass and carbon stocks of forests.

References

Altanzagas B., Luo Y., Altansukh B., Dorjsuren C., Fang J. and Hu H. (2019). Allometric equations for estimating the above-ground biomass of five forest tree species in Khangai, Mongolia. Forests, 10: 661.

BBS S. (2017). Statistical year book of Bangladesh. Bangladesh Bureau of Statistics Division, Ministry of Planning, Government of the People Republic of Bangladesh, Dhaka, Bangladesh.

Brown S., Gillespie A.J. and Lugo A.E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci., 35: 881-902.

Chave J., Andalo C., Brown S., Cairns M.A., Chambers J.Q., Eamus D., Fölster H., Fromard F., Higuchi N. and Kira T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145: 87-99.

Chave J., Réjou-Méchain M., Búrquez A., Chidumayo E., Colgan M.S., Delitti W.B.C., Duque A., Eid T., Fearnside P.M., Goodman R.C., Henry M., Martínez-Yrízar A., Mugasha W.A., Muller-Landau H.C., Mencuccini M., Nelson B.W., Ngomanda A., Nogueira E.M., Ortiz-Malavassi E., Pélissier R., Ploton P., Ryan C.M., Saldarriaga J.G. and Vieilledent G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biol., 20: 3177-3190.

Chianucci F. and Cutini A. (2013). Estimation of canopy properties in deciduous forests with digital hemispherical and cover photography. Agricultural and Forest Meteorology, 168: 130-139.

Clark N.A., Wynne R.H., Schmoldt D.L. and Winn M. (2000). An assessment of the utility of a non-metric digital camera for measuring standing trees. Comput. Electron. Agric., 28: 151–169.

Clark N.A., Zarnoch S.J., Clark A. and Reams G.A. (2001). Comparison of standing volume estimates using optical dendrometers. In, Proceedings of the second annual forest inventory and analysis symposium; 2000 October 17-18; Salt Lake City, UT. Gen. Tech. Rep. SRS-47. Asheville, NC: US Department of Agriculture, Forest Service, Southern Research Station. pp. 123-128.

Cole T.G., Ewel K.C. and Devoe N.N. (1999). Structure of mangrove trees and forests in Micronesia. Forest Ecology and Management, 117: 95-109.

Crosby P., Barrett J.P. and Bocko R. (1983). Photo Estimates of Upper Stem Diameters. J. For., 81: 795–797.

Deb J.C., Halim M.A. and Ahmed E. (2012). An allometric equation for estimating stem biomass of Acacia auriculiformis in the north-eastern region of Bangladesh. Southern Forests: a Journal of Forest Science, 74: 103-113.

Dianyuan H. (2012). Standing tree volume measurement technology based on digital image processing. In, Automatic Control and Artificial Intelligence (ACAI 2012). IET, Xiamen, pp. 1922–1925.

Djomo A.N. and Chimi C.D. (2017). Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: Case study with application to remote sensing. For. Ecol. Manag., 391: 184–193.

Han D. (2012). Standing tree volume measurement technology based on digital image processing.

Henry M., Bombelli A., Trotta C., Alessandrini A., Birigazzi L., Sola G., Vieilledent G., Santenoise P., Longuetaud F. and Valentini R. (2013). GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. Iforest-biogeosciences and forestry, 6: 326.

IPCC, (2014). Synthesis Report (eds Core Writing Team, Pachauri, RK & Meyer LA)(IPCC, 2014). In.

IPCC, (2018). Summary for Policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]. World Meteorological Organization, Geneva, Switzerland, 32 pp. In.

Islam M.R., Azad M.S., Mollick A.S., Kamruzzaman M. and Khan M.N.I. (2021). Allometric equations for estimating stem biomass of Artocarpus chaplasha Roxb. in Sylhet hill forest of Bangladesh. Trees, Forests and People, 100084.

Ketterings Q.M., Coe R., van Noordwijk M. and Palm C.A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For. Ecol. Manag., 146: 199-209.

Khan M.N.I. and Faruque O. (2010). Allometric relationships for predicting the stem volume in a Dalbergia sissoo Roxb. plantation in Bangladesh. iForest - Biogeosciences and Forestry, 3: 153–158.

Khan M.N.I., Islam M.R., Rahman A., Azad M.S., Mollick A.S., Kamruzzaman M., Sadath M.N., Feroz S., Rakkibu M.G. and Knohl A. (2020). Allometric relationships of stand level carbon stocks to basal area, tree height and wood density of nine tree species in Bangladesh. Glob. Ecol. Conserv., e01025.

Khan M.N.I., Shil M.C., Azad M.S., Sadath M.N., Feroz S. and Mollick A.S. (2018). Allometric relationships of stem volume and stand level carbon stocks at varying stand density in Swietenia macrophylla King plantations, Bangladesh. Forest Ecology and Management, 430: 639-648.

Khan M.N.I., Suwa R. and Hagihara A. (2005). Allometric relationships for estimating the aboveground phytomass and leaf area of mangrove Kandelia candel (L.) Druce trees in the Manko Wetland, Okinawa Island, Japan. Trees, 19: 266–272.

Khan M.N.I., Suwa R. and Hagihara A. (2009). Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetlands Ecology and Management, 17: 585-599.

Latif M. and Islam S.Z. (2014). Growth, yield, volume, and biomass equation and tables for important trees in Bangladesh. Forest Inventory Division. Bangladesh Forest Research Institute, PO Box-273, Chittagong-4000, Bangladesh.

Latif M., Rahman M. and Sukumar D. (1995). Volume tables for Acacia auriculiformis, Cassia siamea and Pinus caribaea in Bangladesh. Bangladesh Journal of Forest Science, 24: 22-30.

Mahmood H., Siddique M.R.H., Islam S.Z., Abdullah S.R., Matieu H., Iqbal M.Z. and Akhter M. (2020a). Applicability of semi-destructive method to derive allometric model for estimating aboveground biomass and carbon stock in the Hill zone of Bangladesh. Journal of Forestry Research, 31: 1235-1245.

Mahmood H., Siddique M.R.H., Islam S.Z., Abdullah S.R., Matieu H., Iqbal M.Z. and Akhter M. (2020b). Applicability of semi-destructive method to derive allometric model for estimating aboveground biomass and carbon stock in the Hill zone of Bangladesh. Journal of Forestry Research, 1-11.

Malhi Y., Wood D., Baker T.R., Wright J., Phillips O.L., Cochrane T., Meir P., Chave J., Almeida S. and Arroyo L. (2006). The regional variation of aboveground live biomass in old growth Amazonian forests. Global Change Biology, 12: 1107-1138.

Mascaro J., Litton C.M., Hughes R.F., Uowolo A. and Schnitzer S.A. (2011). Minimizing bias in biomass allometry: model selection and log transformation of data. Biotropica, 43: 649-653.

Nelson B.W., Mesquita R., Pereira J.L.G., Garcia Aquino de Souza S., Teixeira Batista G. and Bovino Couto L. (1999). Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For. Ecol. Manag., 117: 149-167.

Nogueira E.M., Nelson B.W., Fearnside P.M., França M.B. and de Oliveira Ã.C.A. (2008). Tree height in Brazil’s ‘arc of deforestation’: shorter trees in south and southwest Amazonia imply lower biomass. Forest Ecology and Management, 255: 2963-2972.

Ounban W., Puangchit L. and Diloksumpun S. (2016). Development of general biomass allometric equations for Tectona grandis Linn. f. and Eucalyptus camaldulensis Dehnh. plantations in Thailand. Agriculture and Natural Resources, 50: 48-53.

Parresol B.R. (1999). Assessing tree and stand biomass: a review with examples and critical comparisons. For. Sci., 45: 573-593.

Pretzsch H. (2009). Forest dynamics, growth, and yield. In, Forest dynamics, growth and yield. Springer, pp. 1-39.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.

Schlamadinger B. and Marland G. (1996). The role of forest and bioenergy strategies in the global carbon cycle. Biomass and Bioenergy, 10: 275-300.

Schneider C.A., Rasband W.S. and Eliceiri K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 9: 671-675.

Segura M. and Kanninen M. (2005). Allometric Models for Tree Volume and Total Aboveground Biomass in a Tropical Humid Forest in Costa Rica 1. Biotropica: The Journal of Biology and Conservation, 37: 2-8.

Singnar P., Das M.C., Sileshi G.W., Brahma B., Nath A.J. and Das A.K. (2017). Allometric scaling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboos Schizostachyum dullooa, Pseudostachyum polymorphum and Melocanna baccifera. For. Ecol. Manag., 395: 81–91.

Tackenberg O. (2007). A New Method for Non-destructive Measurement of Biomass, Growth Rates, Vertical Biomass Distribution and Dry Matter Content Based on Digital Image Analysis. Ann. Bot. 99: 777–783.

Von Carlowitz H.C. (2000). 1713. Sylvicultura Oeconomica.

West P.W. and West P.W. (2009). Tree and forest measurement. Springer.

Wickham H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.

Zeng W.-S. (2015). Integrated individual tree biomass simultaneous equations for two larch species in northeastern and northern China. Scand. J. For. Res. 30, 594-604.

Zeng W.-s. and Tang S.-z. (2012). Modeling compatible single-tree aboveground biomass equations for masson pine (Pinus massoniana) in southern China. Journal of Forestry Research, 23: 593-598.

Zeng W., Zhang L., Chen X., Cheng Z., Ma K. and Li Z. (2017). Construction of compatible and additive individual-tree biomass models for Pinus tabulaeformis in China. Can. J. For. Res., 47: 467-475.

Downloads

Download data is not yet available.

Published

2023-07-12

How to Cite

Farhana, T., Rafikul Islam, M., Hasan, T., Salim Azad, M., Mollick, A. S., & Khan, N. I. (2023). Stem Volume Allometric Equation of <i>Acacia auriculiformis</i> A. Cunn. Ex benth : Applicability of Digital Photography with Image Analysis as a Non-Destructive Approach. Indian Forester, 149(4), 452–462. https://doi.org/10.36808/if/2023/v149i4/166420

Issue

Section

Articles
Loading...