DNA Barcoding in Pterocarpus Santalinus and Pterocarpus Marsupium - An Economically Important Indigenous Species in India

DNA Barcoding in Pterocarpus Santalinus and Pterocarpus Marsupium - An Economically Important Indigenous Species in India

Authors

  •   A. Shanthi   Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore - 641002
  •   B. Vikashini   Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore - 641002

DOI:

https://doi.org/10.36808/if/2024/v150i5/169650

Keywords:

DNA barcode, Single Nucleotide Polymorphism, rbcL, ITS and psbA-trnH, Illegal wood logs, Endagered species

Abstract

Pterocarpuus santalinus and Pterocarpus marsupium are indigenous, highly valuable timber tree species in India. Pterocarpus santalinus (red sanders) is an endangered tree species found in South India especially at Kadappa, Chittoor, Seshachalam forests of the state of Andhra Pradesh and is highly priced for the utility of its heartwood. Pterocarpus marsupium (Vengai) is a large deciduous tree occurring mainly in the Western Ghats of Southern India and the bark is mainly used in Ayurveda for its medicinal properties. Illicit removal of Pterocarpus tree species exists owing to increase in demand for timber, and derivative products. The ability to identify species from timber products using DNA barcoding techniques would help to reduce the flow of endangered species into the timber market. Hence, it is essential to develop DNA barcoding of the species to identify illegal wood logs and prevent illegal movement of the wood. A study on DNA barcoding of Pterocarpus species was thus initiated. In the present study, three barcode genes viz., rbcL, ITS and psbA-trnH were characterized in both species and unique DNA barcodes were generated for rbcL and ITS genes. The findings of the present study revealed the presence of inter and intra specific putative Single Nucleotide Polymorphism (SNPs) in rbcL and ITS genes. The generated barcodes of Pterocarpus species would serve as a barcode reference source to identify the species with respect to its original geographical location.

References

Bell K.L., Burgess K.S., Okamoto K., Aranda R. and Brosi B.J. (2016). Review and future prospects for DNA barcoding methods in forensic palynology, Forensic Science International: Genetics, 21: 110–116.

Bhagwat R.M., Dholakia B.B., Balasundaran M., Kadoo N.Y. and Gupta V.S. (2011). DNA barcoding to discriminate Dalbergia spp. from Western ghats, World Congress on Biotechnology.

Cahyaningsih R., Compton L., Rahayu R., Brehm J.M. and Maxted N. (2022). DNA Barcoding Medicinal Plant Species from Indonesia, Plants, 11(10): 1375.

Cerutti-Pereyra F., Meekan M.G., Wei N.V., O'Shea O.R., Bradshaw C.J.A. and Austin C.M. (2012). Identification of Rays through DNA Barcoding: An Application for Ecologists, PLOS ONE, 7(6): e36479.

De Mattia F., Gentili R., Bruni I., Galimberti A., Sgorbati S., Casiraghi M. and Labra M. (2012). A multi-marker DNA barcoding approach to save time and resources in vegetation surveys, Botanical Journal of the Linnean Society, 169(3): 518–529.

Dev S.A., Muralidharan E.M., Sujanapal P. and Balasundaran M. (2013). Identification of market adulterants in East Indian sandalwood using DNA barcoding, Annals of Forest Science, 71(4): 517–522.

Dhakad A.K., Chandra A., Santan B., Thakur A. and Rawat J.M. (2017). Analysis of Phylogeny and Evolutionary Divergence of Acacia catechu (L.f.) Willd. based on rbcL conserved sequence, International Journal of Biological Science, 8(2): 89-95.

Dinca V., Zakharov E.V., Hebert P.D.N. and Vila R. (2011). Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe. Proceedings of the Royal Society of London Series B Biological Sciences, 278: 347–355.

Ekrem T., Stur E., Orton M.G. and Adamowicz S.J. (2018). DNA barcode data reveal biogeographic trends in Arctic non-biting midges, Genome, 61(11): 787–796.

Fatima T., Srivastava A., Somashekar P.V., Hanur V.S. and Rao M. (2019). Development of DNA-based species identification and barcoding of three important timbers. Bulletin of the National Research Centre, 43(1).

Farooq Q., Shakir M.Z., Ejaz F., Zafar T., Durrani K. and Ullah A. (2020). Role of DNA barcoding in plant biodiversity Conservation, Scholars International Journal of Biochemistry, 03(03): 48–52.

González M., Baraloto C., Engel J., Mori S.A., Pétronelli P., Riéra B., Roger A., Thébaud C. and Chave J. (2009). Identification of Amazonian Trees with DNA Barcodes. PLOS ONE, 4(10): e7483.

Han J., Shi L., Chen X. and Lin Y. (2012). Comparison of four DNA barcodes in identifying certain medicinal plants of Lamiaceae, Journal of Systematics and Evolution, 50(3): 227–234.

He T., Jiao L., Wiedenhoeft A.C. and Yin Y. (2019). Machine learning approaches outperform distance- and tree-based methods for DNA barcoding of Pterocarpus wood, Planta, 249(5): 1617–1625.

Hebert P.D.N., Cywinska A., Ball S.L. and deWaard J.R. (2003). Biological identifications through DNA barcodes, Proceedings of the Royal Society B: Biological Sciences, 270(1512): 313–321.

Hong Z., Wu Z., Zhao K., Yang Z., Zhang N., Guo J., Tembrock L.R. and Xu D. (2020). Comparative Analyses of Five Complete Chloroplast Genomes from the Genus Pterocarpus (Fabacaeae), International Journal of Molecular Sciences, 21(11): 3758.

Ismail M., Ahmad A., Nadeem M., Javed M.A., Khan S.H., Khawaish I., Sthanadar A.A., Qari S. H., Alghanem S.M., Khan K.A., Khan M.F. and Qamer S. (2020). Development of DNA barcodes for selected Acacia species by using rbcL and matK DNA markers, Saudi Journal of Biological Sciences, 27(12): 3735–3742.

Jiao L., Yu M., Wiedenhoeft A.C., He T., Li J., Liu B., Jiang X. and Yin Y. (2018). DNA Barcode Authentication and Library Development for the Wood of Six Commercial Pterocarpus Species: the Critical Role of Xylarium Specimens, Scientific Reports, 8(1).

Kang Y., Deng Z., Zang R. and Long W. (2017). DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests, Scientific Reports, 7(1).

Kannangara S., Karunarathne S.I., Ranaweera L.T., Ananda K.L.N., Ranathunga D., Jayarathne H.S.M. and Weebadde C. (2020). Assessment of the applicability of wood anatomy and DNA barcoding to detect the timber adulterations in Sri Lanka, Scientific Reports, 10(1).

Kenfack D., Abiem I. and Chapman H.M. (2022). The efficiency of DNA barcoding in the identification of Afromontane Forest tree species, Diversity, 14(4): 233.

Kiew R. (2002). State of biodiversity studies: Sumatra and Peninsular Malesia compared, Flora Malesiana Bulletin, 13: 191–196.

Kress W.J. and Erickson D.L. (2007). A Two-Locus global DNA barcode for land plants: the coding RBCL gene complements the Non-Coding TRNH-PSBA Spacer region, PLoS ONE, 2(6): e508.

Kress W.J., Erickson D.L., Jones F.A., Swenson N.G., Pérez R., Sanjur O.I. and Bermingham E. (2009). Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama, Proceedings of the National Academy of Sciences of the United States of America, 106(44): 18621–18626.

Kress W.J., Erickson D.L., Swenson N.G., Thompson J., Uriarte M. and Zimmerman J.K. (2010). Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican Forest dynamics plot, PLoS ONE, 5(11): e15409.

Kress W.J., Lopez I.C. and Erickson D.L. (2012). Generating plant DNA barcodes for trees in Long-Term Forest Dynamics plots, In Methods in molecular biology (pp. 441–458).

Kress W.J., Wurdack, K.J., Zimmer E.A., Weigt L.A. and Janzen D.H. (2005). Use of DNA barcodes to identify flowering plants, Proceedings of the National Academy of Sciences of the United States of America, 102(23): 8369–8374.

Lahaye R., Van Der Bank M., Bogarín D., Warner J., Pupulin F., Gigot G., Maurin O., Duthoit S., Barraclough T.G. and Savolainen V. (2008). DNA barcoding the floras of biodiversity hotspots, Proceedings of the National Academy of Sciences of the United States of America, 105(8): 2923–2928.

Lassmann T. and Sonnhammer E.L.L. (2005). Kalign – an accurate and fast multiple sequence alignment algorithm, BMC Bioinformatics, 6(1).

Liu J., Yan H. and Ge X. (2016). The use of DNA barcoding on recently diverged species in the genus Gentiana (Gentianaceae) in China, PLoS ONE, 11(4).

Mahadani P., Sharma G.D. and Ghosh S.K. (2013). Identification of ethnomedicinal plants (Rauvolfioideae:

Apocynaceae) through DNA barcoding from northeast India, Pharmacognosy Magazine, 9(35): 255.

Meyer C.P. and Paulay G. (2005). DNA barcoding: Error rates based on comprehensive sampling, PLoS Biology, 3(12): e422.

Muellner A.N., Schaefer H. and Lahaye R. (2011). Evaluation of candidate DNA barcoding loci for economically important timber species of the mahogany family (Meliaceae), Molecular Ecology Resources, 11(3): 450–460.

Paranaiba R.T., De Carvalho C.B.V., Freitas J.M., Fassio L.H., Botelho É.D., Neves D.B., Silva R.C. and Aguiar S.M. (2019). Forensic botany and forensic chemistry working together: application of plant DNA barcoding as a complement to forensic chemistry—a case study in Brazil, Genome, 62(1): 11–18.

Selvaraj D., Dhivya S., Sarma R.K., Joseph J.C., Srinivasan R. and Ramalingam S. (2012). DNA Barcode ITS Effectively Distinguishes the Medicinal Plant Boerhavia diffusa from Its Adulterants, Genomics, Proteomics & Bioinformatics, 10(6): 364–367.

Singh R., Ming R. and Yu Q. (2016). Comparative analysis of GC content variations in plant genomes, Tropical Plant Biology, 9(3): 136–149.

Tautz D., Arctander P., Minelli A., Thomas R.H. and Vogler A.P. (2003). A plea for DNA taxonomy, Trends in Ecology and Evolution, 18(2): 70–74.

Wattoo J.I., Saleem M., Shahzad M., Arif A., Hameed A. and Saleem M. (2016). DNA Barcoding: Amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species, Advancements in Life Sciences, 4(1): 03-07.

Downloads

Download data is not yet available.

Published

2024-05-01

How to Cite

Shanthi, A., & Vikashini, B. (2024). DNA Barcoding in Pterocarpus Santalinus and Pterocarpus Marsupium - An Economically Important Indigenous Species in India. Indian Forester, 150(5), 420‐435. https://doi.org/10.36808/if/2024/v150i5/169650

Issue

Section

Articles
Loading...