Adaptive Object-Oriented and Spectral-Based Geo-Processing for Tree species Mapping using Sentinel-2A and EO-1 Hyperion Hyperspectral Satellite Imagery in FRI Campus
DOI:
https://doi.org/10.36808/if/2025/v151i7/170525Keywords:
Tree species, Spectral analysis, Spectral angle mapper, Spectral information divergence, Object-oriented image analysis.Abstract
Accurate mapping of tree species is essential for effective forest management and conservation. This paper explores various methods for tree species mapping, focusing on the Forest Research Institute (FRI). Authors evaluate GIS and remote sensing techniques through a case study within the FRI campus, presenting an innovative approach that integrates adaptive object-oriented and spectral-based methods. Utilizing moderate resolution Sentinel-2A and hyperspectral EO-1 Hyperion data enhances forest type classification precision. The methodology segments satellite imagery into meaningful objects and applies spectral analysis, achieving an overall classification accuracy of 92.5% and a Kappa coefficient of 0.89. The findings of the study demonstrate the effectiveness of this approach over traditional methods, providing valuable insights for future forest monitoring and management strategies.
References
Ballanti L., Blesius L., Hines E. and Kruse B. (2016). Tree species classification using hyperspectral imagery: A comparison of two classifiers. Remote Sensing, 8(6): 445.
Blaschke T. (2010). Object-based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1): 2-16.
Blaschke T., Hay G.J., Kelly M., Lang S., Hofmann P., Addink E. and Tiede D. (2014). Geographic Object-Based Image Analysis–Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87: 180-191.
Chang C.-I. (2020). Hyperspectral Data Processing: Algorithm Design and Analysis. John Wiley & Sons.
Chen G., Hay G.J., Castilla G., St-Onge B. and Powers R. (2021). A multi-scale geographic object-based image analysis (GEOBIA) to estimate LIDAR-measured forest canopy height and aboveground biomass. International Journal of Applied Earth Observation and Geoinformation, 97: 102292.
Chung S. and Gobron N. (2000). Remote Sensing of the Environment with Reflectance Spectroscopy. In A. N. Strahler (Ed.), The Handbook of Remote Sensing (pp. 113-135). CRC Press.
Cleve C., Kelly M., Kearns F.R. and Moritz M. (2008). Classification of the wildland–urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Computers, Environment and Urban Systems, 32(4): 317-326.
Datt B., McVicar T.R., Van Niel T.G., Jupp D.L. and Pearlman J.S. (2003). Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1246-1259.
Gao B.C., Heidebrecht K.B. and Goetz A.F.H. (2009). Derivation of scaled surface reflectances from AVIRIS data. Remote Sensing of Environment, 113(3): 654-667.
Govender M., Chetty K. and Bulcock H. (2008). A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA, 33(2): 145-151.
Govender M., Chetty K. and Naiken V. (2021). Advances in Hyperspectral Remote Sensing for Vegetation Analysis. International Journal of Remote Sensing, 42(5): 1537-1559.
Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A. and Townshend J.R. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160): 850-853.
Hycza T., Stereńczak K. and Bałazy R. (2018). Potential use of hyperspectral data to classify forest tree species. New Zealand Journal of Forestry Science, 48: 1-13.
Immitzer M., Vuolo F. and Atzberger C. (2016). First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote sensing, 8(3): 166.
Keshava N. (2019). Hyperspectral Data Analysis: Techniques and Trends. IEEE Geoscience and Remote Sensing Magazine, 7(4): 76-89.
Kotresha K. and Singh I.J. (2007). Mapping of Forest Plantation in Forest Research Institute, Dehradun Using IKONOS Data. Mapana Journal of Sciences, 6(2): 75-88.
Kruse F.A., Lefkoff A.B., Boardman J.W., Heidebrecht K.B., Shapiro A.T., Barloon P.J. and Goetz A.F.H. (1993). The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2-3): 145-163. https://doi.org/10.1016/0034-4257(93)90013-N
Lang S., Tiede D. and Blaschke T. (2020). Earth Observation: Data Processing and Applications. Springer.
Lu D. and Weng Q. (2007). A survey of image classification methods and techniques for improving classification performance. International journal of remote sensing, 28(5): 823-870.
Maher A. (2019). Evaluation of Atmospherically Gases Using Models FLAASH and QUAC to Hyper-spectral imagery. Karbala International Journal of Modern Science, 5(4): 3.
Manakos I., Schneider T. and Wocher M. (2022). Evaluation of the spectral angle mapper and machine learning algorithms for forest type classification in temperate forests using hyperspectral imagery. Forests, 13(7): 1050. https://doi.org/10.3390/f13071050
Richards J.A. (2013). Remote Sensing Digital Image Analysis.
Springer Rodríguez-Veiga P., Mollicone D., Herold M., Achard F., Federici S. and Eva H. (2015). An assessment of national forest cover and change in Congo Basin humid forests using multiresolution satellite imagery. Remote Sensing, 7(1): 250-264.
Song X.P., Hansen M.C., Stehman S.V., Potapov P.V., Tyukavina A., Vermote E.F. and Townshend J.R. (2018). Global land change from 1982 to 2016. Nature, 560(7720): 639-643.
Thenkabail P.S. (2020). Hyperspectral Remote Sensing of Vegetation. CRC Press.
Thenkabail P.S., Smith R.B. and De Pauw E. (2013). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71(2): 158-182.
Wulder M.A., Coops N.C. and Satler J.D. (2012). Optical remote sensing techniques for the assessment of forest inventory and biophysical parameters. Progress in Physical Geography, 36(4): 421-449.
Xiaoxia S., Jixian Z. and Zhengjun L. (2005) A Comparison of Object-Oriented And Pixel-Based Classification Approachs Using Quickbird Imagery.
Zhang C., Liu D. and Chen S. (2020). Hyperspectral image classification using a spectral angle mapper and convolutional neural network. Remote Sensing, 12(3): 380. https://doi.org/10.3390/rs12030380.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Unless otherwise stated, copyright or similar rights in all materials presented on the site, including graphical images, are owned by Indian Forester.