Potential Benefits of Forest Litter Biomass in Agriculture

Potential Benefits of Forest Litter Biomass in Agriculture

Authors

  •   Lala I.P. Ray   School of Natural Resource Management, College of Postgraduate Studies in Agricultural Sciences (Central Agricultural University-Imphal), Umiam-793103, Meghalaya
  •   L.K. Behera   Department of Silviculture and Agroforestry, College of Forestry, Navsari Agricultural University, Navsari-396450, Gujarat
  •   Benukantha Dash   Division of Remote Sensing Applications, ICAR-NBSS & LUP, Amaravati Road, Nagpur- 440 033, Maharashtra
  •   Bikaram Singh   Department of Silviculture and Agroforestry, College of Horticulture and Forestry, (Central Agricultural University- Imphal) Pasighat-791 102, Arunachal Pradesh

DOI:

https://doi.org/10.36808/if/2024/v150i9/170528

Keywords:

Forest Litter, Agriculture, Bio-Mulching, Soil Organic Carbon, Soil Erosion.

Abstract

The global forest cover is roughly 4,059 million hectares (mha) and the quantum of forest litter fall from different forest types is estimated to be around 3-12.41 ha-1 per annum. Forest litters play a significant role in nutrient cycling, ecosystem turnover rates and the global carbon cycle. The forest litter biomass can suitably be incorporated into agricultural fields for increasing soli organic carbon, soil moisture conservation and soil fertility enhancement It has also been observed that a significant portion of the forest litter mass is burnt in situ due to forest fire and anthropogenic activities causing multifarious health as well as environmental hazards. The forest litter mass is a potential source of bio-mulch for sustainable soil health and productivity management in the agriculture fields. Organic mulching enhances crop yield under limited or water-deficit soils and helps in maintaining salubrious soil temperature, soil structure, and reduces soil erosion in the long run. Application of forest litter mass in agricultural soils improves the soli health and productivity on one hand and reduce the forest fire hazard on the other. This article summarizes various aspects of the use of forest litter mass as bio-mulch in the agricultural sector and other ancillary benefits.

References

Ahirwal J., Saha P., Nath A., Nath A.J., Deb S. and Sahoo U.K. (2021). Forests litter dynamics and environmentai patterns in the indian Himalayan region. Forest Ecol. and Manag., 499: 1-9.

Baruya P. (2015). World forest and agricuitural crop residue resources for Cofiring, DOi: 10.13140/RG.2.2.36612.78724

Bhandari S. and Bhandari A. (2021). Effect of different muiching materiais on growth and yield of broccoli (Brassies oleracea var. italica). Fund. and Appl. Agri., 6(3): 265-271.

Bhardwaj R.L. (2013). Effect of mulching on crop production under rainfed condition-a review. Agric. Rev., 34(3): 188-197.

Bhatt L., Rana R., Uniyal S.P and Singh V.P (2011). Effect of mulch materials on vegetative characters, yield and economics of summer squash (Cucurbita pepo) under rainfed mid-hill condition of Uttarakhand. Veg. Sci.,38(2): 165-168.

Chalker-Scott L. (2007). Impact of mulches on landscape plants and the environment-a review. J. Environ. Hort., 25(4): 239-249.

Darro H. and Swamy S.L. (2020). Standing litter and litterfall pattern in dry tropical forests of Achanakmaar-Amarkantak Biosphere Reserve (AABR), India. International Journal of Current Microbiology and Applied Sciences, 53(7): 1165-1168.

Devi, Th. I., Ray, L.I.P., Swetha, K., Jyothi, K.S., Ram, V. and Swami, S. (2023). Performance of potato with organic mulches in Meghalaya. Indian Journal of Hill Farming, 36(1): 153-159. doi:10.56678/iahf-2023.36.01.19.

Dhivya R.S. and Ray L.I.P. (2020). Perfomnance of black gram (Vigna mungo L. Hepper) with organic amendments. Indian Journal of Hill Farming, 33(1): 10-18.

Dhivya R.S., Ray L.I.P. and Behera U.K. (2020). Organic amendments on soil nutrient balance under mid hills of Meghalaya, e-planet, 18(1): 29-38.

Eld A.R., Bakry B.A. and Taha M.H. (2013). Effect of pulse drip irrigation and mulching systems on yield, quality traits and inigation water use efficiency of soybean under sandy soil conditions. Agric. Sci., 4(5): 249-261.

Emilia (2023). Impact of organic mulches on productivity of Pea (Pisum sativum) cultivars. M.Sc. (Agronomy) Dissertation, submitted to the Central Agricultural University- Imphal. Pp.86. (Reg. No. CAU/CPGS-AS/AGRON/M21/03).

FAO (2022). Global forest resources assessment. Food and Agriculture Organization, Rome, Italy.

Garhwal J.M., Bhakar S.R., Chhipa B.G. and Singh M. (2020). Effect of inigation frequencies and mulching on growth and yield parameters of chickpea (Cicer arietinum L.). Int. J. Curr Microbiol.App. Sci., 9(9): 1712-1717.

Gurjar G.N., Ram V., Thakuria D., Singh A.K., Ray L.I.P. and Singh R. (2022). Impact of different sowing dates and mulching practices on economics of potato (K. Himalini) crop. The Phanrta Innovation Journal, 11(1): 198-200.

ISFR (2021). India State of Forest Report, Forest Survey of India, (Ministry of Environment, Forest and Climate Change), Dehradun, India.

Jadav M.L., Mishra K.P, Mishra U.S. and Pandey A. (2020). Effect on yield, water use efficiency and economics of pigeonpea to mulch and irrigation under Vindhyan plateue of Madhya Pradesh, int. J. Curr. Microbiol. App. Sci., 9(9): 3525­3533.

Jalota S.K., Khera R., Arora V.K. and Beri V. (2007). Benefits of straw mulching in crop production: a review. J. Res. Punjab Agric. Univ., 44(2): 104-107.

Jourgholami M., Sohrabi H., Venanzi R., Tavankar F. and Picchio R. (2020). Hydrologic responses of undecomposed litter mulch on compacted soil: Litter water holding capacity, runoff, and sediment.

Kershnar R. and Montagnini F. (1998). Leaf litter decomposition, litterfall, and effects of leaf mulches from mixed and IVIonospecific plantations in Costa Rica. J. of Sustainable Forestry, 7(3-4): 95-118.doi: 10.1300/J091v07n0308.

Li Q., Li H., Zhang L., Zhang S. and Chen Y. (2019). Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis. Field Crops Res., 221:50-60.

Liu, H., Cui, H., Yu, P and Huang, Y. (2004). The origin of remnant forest stands of Pinus tabui aeformis in southeastern Inner Mongolia, China, Plant Ecology, 158:139-151.

Maheswaren P. and De Silva C.S. (2018). Impact of irrigation methods and mulches on Chilli (Capsicum annuum L.) leaf curl complex and yield in Jaffna district of Sri Lanka. J. of Engg. and Tech. of the Open University of Sri Lanka, 6(2): 40-53.

Marwein Y. (2016). Influence of organic mulching on soil moisture and yield of rajma (Phaseolus vulgaris L.) varieties under mid altitude of Meghalaya. M.Sc. (Agronomy) Dissertation, submitted to the Central Agricultural University-Imphal. Pp88. [Reg. No. CAU/810-A/10(B)]

Marwein Y. and Ray L.I.P. (2019). Performance of Rajma (Phaseolus vulgaris) cultivars under organic mulches in Meghalayan Plateau of North Eastern India. Legume Research-an Inter. Journal, 42(1): 114-118.doi: 10.18805/LR-3827.

Marwein Y. and Ray L.I.P. (2021). Variation of Bio-phisco edaphic parameters under organic mulch grown with French bean (Phaseolus vulgaris L.). Ind. J. of Hill Far, 34(1): 154­1160.

Mawthaoh J.M., Ray L.I.P, Singh A.K., Singh N.J. and Dhivya R.S. (2019). Performance of potato (Solanum tuberosum L.) with organic inputs in north eastern India, e-planet 17(2): 117­122.

Mawthaoh J.M. Mishra G.P. and Ray L.I.P. (2023). Maximizing potato yield and water use efficiency: stage based irrigation scheduling with organic inputs in North Eastern India. Ind. J. of Soil Con., 5U3): 228-235. doi: 10.59797/ijsc.v51.i3.139.

Mohiuddin G., Debnath S. and Maitra S. (2020). Mulching: Materials, advantages and crop production. In: Maitra, S., Gaikwad, D.J. and Shankar, T. (Ed) Protected cultivation and smart agriculture, New Delhi Publishers, New Delhi, India, pp. 55-66.

Murphy P.G. and Lugo A.E. (1986). Stnjcture and biomass of a subtropical dry forest in Puerto Rico. Biotroplca., 18:89-96.

Omoro L.M.A. and Nair P.K.R. (1993). Effects of mulching with multiputpose-tree prunings on soil and water run-off under semi-arid conditions in Kenya. Agroforestry Syst, 22(3): 225­239.

Opara-Nadi O.A. and Lai R. (1987). Influence of method of mulch application on growth and yield of tropical root crops in southeastern Nigeria. Soil and Tillage Res., 9(3): 217-230.

Parida P.K., Ray L.I.P. and Shirisha K. (2023). Effect of organic mulches on yield, water productivity and economy of garden pea cultivars. inter. J. of Env. and Climate Change 13(8): 1773­1783. doi: 10.9734/IJECC/2023/v13182131.

Pramanik P., Bandyopadhyay K.K., Bhaduri D., Bhattacharyya R. and Agganwal P. (2015). Effect of mulch on soil thermal regimes-a review. Int. J. Agric., Environ. Biotechnol., 8(3): 645­658.

Sampio, E.V.DeSa B., Dallolio A., Nunes K.S. and DeLemos E.E.P. (1993). A model of litterfall, litter layer losses and mass transfer in a humid tropical forest at Pernambuco, Brazil. J. of Trap. Ecology, 9:291-301.

Sekhon N.K., Hira G.S., Sidhu A.S. and Thind S.S. (2005). Response of soyabean (Glycine max Mer.) to wheat straw mulching in different cropping seasons. Soil Use and Management, 21(4): 422-426.

Shen Z.Y., Gong Y.W., Li Y.H., Hong Q., Xu L. and Liu R.IVI. (2019). A comparison of WEPP and SWAT for modelling soil erosion of th Zhangjiachong watershed in the three gorges reservoir area. Ago. Water Manage.,96(10): 1435-1442.

Shirish, S.P., Tushar S.K. and Satish A.B. (2013). IVIulching: a soil and water conservation practice. Res. J. Agric. For. Sci., 1(3): 26-29.

Shirisha K. (2021). Perfomnance evaluation of Lentil (Lens culinaris Medik.) cultivars under different organic mulching. M.Sc. (Agronomy) Dissertation, submitted to the Central Agricultural University-Imphal. Pp. 80. (Reg. No. CAU/CPGS-AS/AGRON/M19/03).

Shirisha K., Ray L.I.P., Parida P.K., Singh A.K. and Singh N.J. (2023). Organic mulching effects on water productivity, soil temperature, growth and yield of lentil varieties. Inter. J. of Bio-resource and Stress Manag., 14(8): 1099-1107.

Sibel T.M., Evrendilek R, Berberoglu S. and Donmez C. (2010). Modeling above-ground litterfall in eastern mediterranean conifer forests using fractional tree cover, and remotely sensed and ground data. Applied vege. Sci., 13:485-497. doi:10.1111/j.16 54-109X.2010.01088.x.

Tang J.W., Cao M., Zhang J.H. and Li M.H. (2010). Litterfall production, decomposition and nutrient use efficiency varies with tropical forest types in Xishuangbanna, SW China: a 10-year study. Plant and Soil, 335:271-288.

Thakur T., Swamy S.L., Bijalwan A. and Dobriyal M.J. (2022). Assessment of biomass and net primary productivity of a dry tropical forest using geospatial technology. J For. Res., 30(1): 157-170.

Thankamani C.K., Kandiannan K., Hamza S. and Saji K.V. (2016). Effect of mulches on weed suppression and yield of ginger (Zingiber officinale Roscoe). Sci. Horticu., 207:125-130.

Vitousek P.M. and Sanford Jr. R.L. (1986). Nutrient cycling in moist tropical forest. Rev. Ecol. Syst, 17:137-167.

Wallis C.L.B., Homeier J., Pena J., Brandi R. and Fanvig N. (2019). Modeling tropical montane forest biomass, productivity and canopy traits with multispectral remote sensing data. Rem. Sen. Env., 225:77-92.

Wang B., Verheyen K., Baeten L. and De Smedt P. (2021). Herb litter mediates tree litter decomposition and soil fauna composition. Soil Bio. and Biochem., 152: 108063. doi: 10.1016/j.soilbio.2020.108063.

Wang G., Guan D., Xiao L. and Peart M.R. (2019). Forest biomass-carbon variation affected by the climatic and topographic factors in Pearl River Delta, South China. J. Env. Manage., 232:781-788.

Wilen C.A., Schuch U.K. and Elmore C.L. (1999). Mulches and sub-irrigation control weeds in container production. J. Environ. Hortic., 17:174-180.

Yadav D.K. (2018). Litterfall pattern and forest floor biomass in Achanakmar Amarkantak Biosphere Reserve, India. Bull. Env. Pharmacol Life Sci., 7(6): 45-52.

Zhang H., Yuan W. and Liu S. (2014). Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol Complexity, 20: 240-247.

Downloads

Download data is not yet available.

Published

2024-09-01

How to Cite

Ray, L. I., Behera, L., Dash, B., & Singh, B. (2024). Potential Benefits of Forest Litter Biomass in Agriculture. Indian Forester, 150(9), 840–846. https://doi.org/10.36808/if/2024/v150i9/170528
Loading...