Impact of Climate Change on the Distribution of Endemic orchid Habenaria grandifloriformis Blatt. & McCann in Peninsular India
DOI:
https://doi.org/10.36808/if/2025/v151i11/170847Keywords:
Climate change, Endemic, Peninsular India, Near threatened, MaxEnt.Abstract
The present study investigated the species distributional model of Habenaria grandifloriformis Blatt & McCann in Peninsular India using the MaxEnt model under two climate change scenarios (SSP2-4.5 & SSP5-8.5). Both primary (field surveys) and secondary data (herbarium & literature surveys), along with aspect, elevation, slope, and 19 bioclimatic variables, were used to determine the current and future habitat suitability of the species. A total of 249 occurrence records were taken into account, out of which 30% were used as training data. Of the total study area, 51332.33 km2 (2.93%) is highly suitable for the species. The model projects a substantial decrease in the future by 4.93% to 25.90% under SSP2-4.5 and 4.10% to 49.13% in SSP5-8.5 scenarios by 2090. A state-wise analysis indicates that Maharashtra has the highest suitable habitat and is projected to decrease in the future, except in 2040. The present study highlights that the Maximum Temperature of the Warmest Month (Bio5) and Annual precipitation (Bio12) were the most significant variables in the model, followed by Precipitation Seasonality (Bio15), which also contributed substantially to the species distribution. Moreover, Rajasthan is projected to have more than 100 km2 of suitable habitat under future climatic conditions in both scenarios. As the habitat of the species is severely threatened by tourism and other human activities, this study provides baseline data on probable suitable habitat to support conservationists in taking essential steps for the species' protection.
References
Alarcón D., Santos D. and Arroyo M.T. (2023). Population Based Evidence of Climate Change Adaptation in an Endangered Plant Endemic to a Biodiversity Hotspot, Plants, 12(10): 2017.
Ali F., Khan N., Khan A.M., Ali K. and Abbas F. (2023). “Species Distribution Modelling of Monotheca buxifolia (Falc.) A. DC.: Present Distribution and Impacts of Potential Climate Change.” Heliyon, 9(2): e13417. https://doi.org/10.1016/j.heliyon.2023.
Boral D. and Moktan S. (2024). Modelling current and future potential distribution of medicinal orchids in Darjeeling eastern Himalaya. Plant Ecology, 225(3): 213-226.
Chandra N., Singh G., Lingwal S., Jalal J.S., Bisht M.S., Pal V., Bisht M.P.S., Rawat B. and Tiwari L.M. (2022). Ecological niche modeling and status of threatened alpine medicinal plant Dactylorhiza hatagirea D. Don in Western Himalaya. Journal of Sustainable Forestry, 41(10): 1029-1045.
Chandra N., Singh G., Rai I.D., Mishra A.P., Kazmi M.Y., Pandey A., Jalal J.S., Costache R., Almohamad H., Al-Mutiry M. and Abdo H.G. (2023). Predicting distribution and range dynamics of three threatened Cypripedium species under climate change scenario in Western Himalaya. Forests, 14(3): 633.
Cheaib A., Badeau V., Boe J., Chuine I., Delire C., Dufrêne E., François C., Gritti E.S., Legay M., Pagé C. and Thuiller W. (2012). Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecology letters, 15(6): 533-544.
Decruse S.W. (2023). Ecological niche modeling to find potential habitats of Vanda thwaitesii, a notified endangered orchid of Western Ghats, India. Journal of Threatened Taxa, 15(3): 22874-22882.
Dutta D. and De A. (2022). A comparative analysis of the past and present occurrences of some species of Paphiopedilum (Orchidaceae) in northeastern India using MaxEnt and GeoCAT. Journal of Threatened Taxa, 14(11): 22086-22097.
Elith J., Graham C.H., Anderson R.P., Dudik M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L.G., Loiselle B.A., Manion G., Moritz C., Nakamura N., Nakazawa Y., Overton J. M., Peterson A.T., Phillips S.J., Richardson K., Scachetti Pereira R., Schapire R.E., Soberon J., Williams S., Wisz M.S. and Zimmermann N.E. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29: 129–51.
Govaerts R., Bernet P., Kratochvil K., Gerlach G., Carr G., Alrich P., Pridgeon A.M., Pfahl J., Cam pacci M.A., Holland Baptista D., Tigges H., Shaw J., Cribb P., George A., Kreuz K. and Wood J. (2020) World checklist of Orchidaceae. Facilitated by the Royal Botanic Gardens, Kew. http://wcvp.science.kew.org/
Gray S.B. and Brady S.M. (2016). Plant developmental responses to climate change. Developmental biology, 419(1): 64-77.
Hamid M., Khuroo A.A., Ahmad R., Rasheed S., Malik A.H. and Dar G.H. (2020). Threatened flora of Jammu and Kashmir state. In. Biodiversity of the Himalaya: Jammu and Kashmir state(G.H. Dar and A.A.Khuroo, Eds), pp 957-995.
Hazarika A., Deka J.R., Majumdar K., Sileshi G.W., Nath A.J. and Das A.K. (2025). MaxEnt modeling for habitat suitability assessment of threatened Dipterocarpus species in the Indian East Himalayas. Biodiversity and Conservation, 34(1): 1-18.
Jalal J.S. (2018). Orchids of Maharashtra. Botanical Survey of India, Kolkata, 236 pp.
Jalal J.S. (2018). Wild Orchids of Goa. Botanical Survey of India, Kolkata, 171 pp.
Jalal J.S. and Jayanthi J. (2012). Endemic orchids of peninsular India: A review. J. Threat. Taxa, 4: 3415–25.
Jalal J.S. and Singh P. (2017). Ecological niche modelling for conservation of Habenaria suaveolens Dalzell, an endangered orchid species endemic to Western Ghats: A case study. Journal of the Orchid Society of India, 31: 77-83.
Kolanowska M. (2024). Climate change will decrease the coverage of suitable niches for Asian medicinal orchid (Bulbophyllum odoratissimum) and its main phorophyte (Pistacia weinmannifolia). Scientific Reports, 14(1): 22656.
Kolanowska M. and Konowalik K. (2014). Niche conservatism and future changes in the potential area coverage of Arundina graminifolia, an invasive orchid species from Southeast Asia. Biotropica, 46(2): 157-165.
Kolanowska M., Rewicz A. and Baranow P. (2020). Ecological niche modeling of the pantropical orchid Polystachya concreta (Orchidaceae) and its response to climate change. Scientific Reports, 10(1): 14801.
Kong F., Tang L., He H., Yang F., Tao J. and Wang W. (2021). Assessing the impact of climate change on the distribution of Osmanthus fragrans using Maxent. Environmental Science and Pollution Research, 28(26): 34655–34663.
Lekhak M.M. and Yadav S.R. (2012). Herbaceous vegetation of threatened high altitude lateritic plateau ecosystems of Western Ghats, southwestern Maharashtra, India. Rheedea, 22(1): 39-61.
Manes S., Costello M.J., Beckett H., Debnath A., Devenish Nelson E., Grey K.A. and Vale M.M. (2021). Endemism increases species' climate change risk in areas of global biodiversity importance. Biological Conservation, 257: 109070.
Misra S. (2007). Orchids of India - A Glimpse. Bishen Singh, Mahendra Pal Sing, Dehra Dun, India, 390pp.
Mithilasri M., Shankar S.M. and Parthiban K.T. (2024). MaxEnt modelling for predicting influences of climate transformation on the suitable habitat of Bulbophyllum acutiflorum A. Rich. an endangered orchid in Anaimalai, Western Ghats of Tamil Nadu. Int. J. Adv. Biochem. Res., 8: 1332–1338.
Mousavi Kouhi S.M. and Erfanian M. (2020). Predicting the present and future distribution of medusahead and barbed goatgrass in Iran. Ecopersia, 8(1): 41-46.
O'Neill B.C., Tebaldi C., van Vuuren D.P., Eyring V., Friedlingstein P., Hurtt G., Knutti R., Kriegler E., Lamarque J.F., Lowe J. and Meehl G.A., (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9: 3461–3482.
Parmesan C. and Hanley M.E. (2015). Plants and climate change: complexities and surprises. Annals of botany, 116(6) : 849-864.
Patil A. (2022). Habenaria grandifloriformis. The IUCN Red List of Threatened Species 2022: e.T13424554A13424557.
Phillips S.J., Anderson R.P. and Schapire R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4): 231–259
Prasad K., Karuppusamy S. and Pullaiah T. (2019). Orchids of Eastern Ghats (India). Scientific Publishers, 304 pp.
Singh L., Kanwar N., Bhatt I.D., Nandi S.K. and Bisht A.K. (2022). Predicting the potential distribution of Dactylorhiza hatagirea (D. Don) Soo-an important medicinal orchid in the West Himalaya, under multiple climate change scenarios. PLoS One, 17(6): e0269673.
Singh S.K., Agrawala D.K., Jalal J.S., Dash S.S., Mao A.A. and Singh P. (2019). Orchids of India-A Pictorial Guide. Botanical Survey of India, Kolkata, 546 pp.
Tang X., Yuan Y. and Zhang J. (2020). How climate change will alter the distribution of suitable Dendrobium habitats. Frontiers in Ecology and Evolution, 8: p.536339.
Wang Z., Li N., Xu R., Ying Z., Ruan X., Wang T., Liao W. and Su Y. (2024). Distribution model and prediction of the tree fern Alsophila costularis Baker (Cyatheaceae) in China. Ecology and Evolution, 14(6):11594.
Wani I.A., Khan S., Verma S., Al-Misned F.A., Shafik H.M. and El-Serehy H.A. (2022). Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Scientific Reports, 12(1): 13205.
Watve A. (2013). Status review of Rocky plateaus in the northern Western Ghats and Konkan region of Maharashtra, India with recommendations for conservation and management. Journal of Threatened taxa, 5(5): 3935-3962.
Xiao X., Ran Z., Yan C. and Chen J. (2024). Prediction of Suitable Habitats for sect. Tuberculata (Camellia L.) Based on t he MaxEnt Model. PREPRINT (Version 1) https://doi.org/10.21203/rs.3.rs-4198989/v1.
Yang Z., Bai Y., Alatalo J.M., Huang Z., Yang F., Xiaoyan P., Wang R., Yang W. and Guo X. (2021). “Spatio-Temporal Variation in Potential Habitats for Rare and Endangered Plants and Habitat Conservation Based on the Maximum Entropy Model.” Science of the Total Environment, 784: 147080.
Yuan Y., Tang X., Liu S. and Zhang J. (2020). The major factors influencing distribution of three species of Dendrobium: Analysis of potential ecologically suitable distributions. Journal of Applied Research on Medicinal and Aromatic Plants, 19: 100275.
Zhou Y., Zhang Z., Zhu B., Cheng X., Yang L., Gao M. and Kong R. (2021). MaxEnt modeling based on CMIP6 models to project potential suitable zones for Cunninghamia lanceolata in China. Forests, 12(6), p.752.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Unless otherwise stated, copyright or similar rights in all materials presented on the site, including graphical images, are owned by Indian Forester.