Genetic Status of Pinus Species

Genetic Status of Pinus Species

Authors

  •   Shilpi Paul   G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi- Katarmal, Almora-Uttarakhand

DOI:

https://doi.org/10.36808/if/2017/v143i5/73475

Keywords:

Pinus Species, Genetic Diversity, Mapping.

Abstract

The genus Pinus is one of the important trees in forest of Indian Himalayan Region. Pinus is the largest genus in the family Pinaceae. In the Indian Himalayan Region five species of Pinus have been reported. It plays an important ecological and economic role in Indian Himalayan forestry, where over 8, 90,000 hectares (ha) are covered by planted and natural forests of these species. Like other conifers, the genus has a large genome size which have great hindrance in their sequencing. They have also used for large-scale investigations of expressed gene sequences which provide information to map the genes. A wide range of genetic diversity showed high gene flow in these species. Therefore, it is anticipated that pine genetic mapping activities will continue to grow and used to study the genetic architecture of quantitative traits and facilitate the future assembly of the genome sequences of these species.

References

Chagné D., Lalanne C., Madur D., Kumar S., Frigerio J.M., Krier C., Decroocq S., Savouré A., Bou-Dagher-Kharrat M., Bertocchi E., Brach J. and Plomion C. (2002). A high density genetic map of maritime pine based on AFLPs. Ann. For. Sci., 59:627–636.

Chauhan P., Ginwal H.S., Rawat A. and Barthwal S. (2010). Cross-species amplification and characterization of chloroplast and nuclear microsatellite markers in Himalayan Chir Pine (Pinus roxburghii Sarg.) Molecular Ecology Resources, 11: 219-222.

Devey M.E., Delfino-Mix A., Kinloch B.B. and Neale D.B. (1995). Efficient mapping of a gene for resistance to white pine blister rust in sugar pine. Proc. Natl. Acad. Sci. USA, 92: 2066–2070.

Dong J. and Wagner D.B. (1994). Paternal inherited Chloroplast polymorphism in pine: Estimation of diversity and population subdivision, and tests of disequilibrium with a maternally inherited mitochondrial polymorphism. Genet., 136: 1187-1194.

Elsik C.G., Minihan V.T., Hall S.E., Scarpa A.M. and Williams C.G. (2000). Low-copy microsatellite markers for Pinus taeda L. Genome, 43: 550-555.

Gerber S. and Rodolphe F. (1994). An estimation of the genome length of maritime pine (Pinus pinaster Ait). Theor. Appl. Genet., 88: 289-292.

Ginwal H.S. and Jadon V.S. (2009). Observation on provenance variation in Pinus kesiya Royle Ex Gordon using RAPD marker. Indian Forester, 135(4): 449-458.

Ginwal H.S., Jadon V.S. and Maurya S.S. (2009). Remove from marked records genetic variability in Pinus gerardianaWall. ex Lamb. revealed by RAPD markers. Indian J. Forestry, 32(4) 517-521.

Ginwal H.S., Chauhan P., Maurya S.S. and Jadon V.S. (2010). Genetic variability in Pinus roxburghii Sarg. Revealed by RAPD markers. Bioremediation, Biodiversity and Bioavailability, 4: 28-34

Ginwal H.S., Bisht P., Chauhan P., Maurya S.S. and Barthwal S. (2009). Genetic relationship between three Himalayan pines of Indian occurrence. Indian J. Genet. Pl. Breed., 69(1): 81-3.

Gonz á lez-Mart í nez S.C., Krutovsky K.V. and Neale D.B. (2006). Forest-tree population genomics and adaptive evolution. New Phytologist, 170: 227 – 238.

Grattapaglia D., Chaparro J., Wilcox P., McCord S., Werner D., Amerson H., McKeand S., Bridgewater F., Whetten R., O'Mally D. and Sederoff R. (1992). Mapping in woody plants with RAPD markers: Application to breeding in forestry and horticulture, p. 37–40. In: Applications of RAPD technology to plant breeding. Joint Plant Breeding Symp. Ser., Minneapolis.

Gupta R.K. (1983). The living Himalayas, Ed: pp 16-231. Today and Tomorrow's Printers and Pub, New Delhi.

Kant A., Pattanayak D., Chakarbarty S.K., Sharma R., Thakur M. and Sharma D.R. (2006). RAPD analysis of genetic variability in Pinus gerardiana wall. Kinnaur (Himachal Pradesh). Indian J. Biotechnology. 5:62-67.

Kim Y.Y., Choi H.S. and Kang B.Y. (2005). An AFLP-based linkage map ofJapanese red pine (Pinus densiflora) using haploid DNA samples of megagametophytes from a single maternal tree. Mol. Cells, 20: 201-209.

Kubisiak T.L., Nelson C.D., Nance W.L. and Stine M. (1995). RAPD linkage mapping in a longleaf pine slash pine F1 family. Theor. Appl. Genet., 90: 1119-1127.

Nelson C.D., Kubisiak T.L., Stine M. and Nance W.L. (1994). A genetic linkage map of longleaf pine (Pinus palustris Mill.) based on random amplified polymorphic DNAs. J. Hered., 85: 433-439.

Nelson C.D., Nance W.L. and Doudrick R.L. (1993). A partial genetic linkage map of slash pine (Pinus elliotti Englem var. elliottii) based on random amplified polymorphic DNA's. Theor. Appl. Gene., 8: 145-151.

Parasharami V.A. and Thengane S.R. (2012). Inter population genetic diversity analysis using ISSR markers in Pinus roxburghii (Sarg.) from Indian provenances. Int. J. Biodiv. Conser., 4(5): 219-227.

Paul S., Gopal S., Nandi S.K. and Palni L.M.S. (2015). Eco-morphology and molecular attributes of twisted and straight Chir pine (Pinus roxburghii Sarg.) growing in Uttarakhand: Central Himalaya of Indian Himalayan region. Inte. J. Advanced Research, 3(3):885-894

Plomion C., O'Malley D.M. and Durel C.E. (1995). Genomic analysis in maritime pine (Pinus pinaster). Comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual. Theor. Appl. Gene., 90: 1028-1034.

Rawat A., Barthwal S. and Ginwal H.S. (2014). Comparative assessment of SSR, ISSR and AFLP markers for characterization of selected genotypes of Himalayan Chir pine (Pinus roxburghii Sarg.) based on resin yield. Silvae Genetica, 63(3):94-109.

Rawat A., Barthwal S. and Ginwal H.S. (2013). Genomic DNA extraction from sapwood of Pinus roxburghii for polymerase chain reaction studies. African J. Biotechnology, 12(15): 1732-1735.

Raj A., Sehgal R.N., Sharma K.R. and Sharma P.K. (2010). Genetic variation in wood specific gravity among half-sib families of Chir pine (Pinus roxburghii Sargent). New Forests, 40: 213-227.

Sharma K., Degen B., Wuehlisch G.V. and Singh N.B. (2007). An assessment of heterozygosity and fitness in Chir pine (Pinus roxburghii Sarg) using isozymens. New Forest, 34: 153-162.

Sharma R., Kumar S. and Thakur K.S. (2006). Genetic improvement of Chir pine (Pinus roxburghii Sargent.) in India - A review. Indian Forester, 132(3): 314-328.

Sinha D. Singh J., Tandon P.K. Kakkar P. (2013). Genetic Diversity of Pinus Roxburghii Sarg. Collected from Different Himalayan Regions of India assessed by random amplified polymorphic DNA analysis. Toxicol Int., 20(3): 208–213.

Srivastava D., Giri P., Gupta S. and Ginwal H.S. (2010). Molecular investigation between four Himalayan pines of India through random amplified polymorphic DNA markers. African J. Biotechnology , 11(78): 14292-14296.

Travis S.E., Ritland K., Whitham T.G. and Keim P. (1998). A Genetic linkage map of Pinyon pine (Pinus edulis) based on amplified fragment length polymorphisms. Theor. Appl. Genet., 97: 871-880.

Troup R.S. (1921). Indian Forest Utilization. P-169. Troup, R. S. 1916. Pinus longifolia Roxb., a Silvicultural study. The Indian Forest Memoirs, (1) 126. Calcutta.

Walter R. and Epperson K. (2001). Geographic pattern of genetic variation in Pinus resinosa: area of greatest diversity is not the origin of postglacial populations. Mol. Ecol, 10: 103:111.

Yazdani R., Yeh F.C. and Rimsha J. (1995). Genomic mapping in Pinus sylvestris (L.) using random amplified polymorphic DNA markers. Forest Genetics, 2: 109–116.

Downloads

Download data is not yet available.

Published

2017-05-24

How to Cite

Paul, S. (2017). Genetic Status of <I>Pinus</I> Species. Indian Forester, 143(5), 483–486. https://doi.org/10.36808/if/2017/v143i5/73475

Issue

Section

Articles
Loading...