Approaches of De novo Assembly, Annotation and RNA-Seq Profiling in Forest Tree Improvement: A Review
DOI:
https://doi.org/10.36808/if/2021/v147i6/151511Keywords:
cDNA Library, De novo Transcriptome, DEGs, Forest Trees, Gene Ontology, RNA-Seq.Abstract
Transcriptome analysis (RNA-seq) using next generation sequencing has allowed the researchers to simultaneously identify gene expression dynamics and differential gene expressions. This technique has a better approach to understand the biological functions of plants/trees. RNA-seq also gives information that how genes are regulated and the assembled sequence data help in designing biomarkers for unknown or new species. In forestry species, it has enabled the study of how gene expression changes in several trees due to stress or other factors. Therefore, RNAseq analysis plays a key role in advancing genomic and molecular biology research in forest trees. Due to lack of deep genomic background of forest trees, transcriptomes for most species need to be assembled de novo i.e., without reference. In the present review, we have reported and assembled reference RNA-seq data available for tropical and temperate forest tree species for the first time. This article also focuses on the terminologies and steps used for whole transcriptome analysis system, since from the collection of plant material, to extraction of total RNA, library preparation, transcripts, coding sequences, unigenes, functional annotation, gene ontology, differential expressed genes (DEGs), gene expression values and functional metabolic pathways analysis.References
Adem M., Beyene D., Feyissa T., Zhao K. and Jiang T. (2019). De Novo Assembly and Transcriptome Profiling of Ethiopian Lowland Bamboo Oxytenanthera Abyssinica (A. Rich) Munro Under Drought and Salt Stresses. The Open Biotech Journal, 13: 6-17.
Baker E.A.G., Wegrzyn J.L, Sezen U.U., Falk T., Maloney P.E., Wogler D.R., Delfino-Mix A., Jensen C., Mitton J., Wright J., Knaus B., Rai H., Cronn R., Gonzalez-Ibeas D., Vasquez Gross H.A., Famula R.A., Liu J.J., Kueppers L.M. and Neale D.B. (2018). Comparative Transcriptomics Among four white Pine species, Genes Genomes Genetics, 8: 1461-1474.
Bhambhani S., Lakhwani D., Gupta P., Pandey A., Dhar Y. V., Bag S. K., Asif M. H. and Trivedi P.K. (2017). Transcriptome and metabolite analyses in Azadirachta indica: identification of genes involved in biosynthesis of bioactive triterpenoids. Scientific Reports, 7: 5043.
Bhandawat A., Singh G., Seth R., Singh P. and Sharma R.K. (2017). Genome-Wide Transcriptional Profiling to Elucidate Key Candidates Involved in Bud Burst and Rattling Growth in a Subtropical Bamboo (Dendrocalamus hamiltonii). Frontiers of Plant Science, 7:2038.
Benjamin B., Xie C. and Huson D.H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1): 59.
Bernard A., Barreneche T., Lheureux F. and Dirlewanger E. (2018). Analysis of genetic diversity and structure in a worldwide walnut (Juglans regia L.) germplasm using SSR markers. Plos One, 13(11): e0208021.
Bolger A.M., Lohse M. and Usadel B. (2014). Trimmomatic: a flexible trimmer for illumina sequence data, Bioinformatics, 30(15): 2114-2120.
Bogler M., Arsova B. and Usadel B. (2018). Plant genome and transcriptome annotations: from misconception to simple solutions. Briefings in Bioinformatics, 19(3): 437-449.
Carvalho A., Graca C., Carocha V., Pera S., Lousada J. L., Brito J. L. and Paiva J. A. P. (2015). An improved total RNA isolation from secondary tissues of woody species for coding and non-coding gene expression analyses. Wood Science Technology, 49:647-658.
Chan K..L., Ho C.L., Namasiwayam P. and Napis S. (2007). A simple and rapid method for RNA isolation from plant tissues with high phenolic compounds and polysaccharides, Nature Protocols, 184.
Chang P., Zhu L., Zhao M., Li C., Zhang Y. and Li L. (2019). The first transcriptome sequencing and analysis of the endangered plant species Picea neoveitchii Mast. and potential EST-SSR markers development, Biotechnology & Biotechnological Equipments, 33(1): 967-973.
Chang S. and Cairney J. (1993). A simple and efficient method for isolating RNA from Pine trees, Plant Molecular Biology Reports, 11(2): 113-116.
Chen C., Kuo T.C.Y., Yang M. H., Chien T.Y., Chu M. J., Huang L.C., Chen C.Y., Lo H.F., Jeng S.T. and Chen L.F.O. (2014). Identification of cucurbitacins and assembly of a draft genome for Aquilaria agallocha, BMC Genomics, 15: 578.
Cheng H., Chen X., Fang J., An Z., Hu Y. and Huang H. (2018). Comparative transcriptome analysis reveals an early gene expression profile that contributes to cold resistance in Hevea brasiliensis (the Para rubber tree). Tree Physiology, 38(9): 1409-1423.
Celedon J.M., Chiang A., Yuen M.M.S., Diaz-Chavez M.L., Madilao L.L., Finnegan P.M., Barbour E. L. and Bohlmann J. (2016). Heartwood specific Transcriptome and metabolite signatures of tropical sandalwood (Santalum album) reveal the final step of (Z)-santalol fragrance biosynthesis. The Plant Journal, 86: 289-299.
Conesa A., Gotzs S., Garcia-Gomez J. M., Terol J., Talon M. and Robles M. (2005). Blast2GO: A universal tool forannotation, visualization and analysis in functional genomics research. Bioinformatics, 21: 3674-3676.
Cui K., Wang H., Liao S., Tang Q., Li L., Cui Y. and He Y. (2016). Transcriptome Sequencing and Analysis for Culm Elongation of the World's Largest Bamboo (Dendrocalamus sinicus). Plos One, 11(6): e0157362.
Dasgupta M.G., Ulaganathan K., Dev S.A. and Balakrishnan S. (2019). Draft genome of Santalum album L. provides genomic resources for accelerated trait improvement. Tree Genetics and Genomoes, 15: 34.
Deshmukh A.B., Sagar S., Datir S.S., Bhonde Y., Kelkar N., Samdani P. and Tamhane V.A. (2018). De novo root transcriptome of a medicinally important rare tree Oroxylum indicum for characterization of the flavonoid biosynthesis pathway, Phytochemistry, 156: 201-213.
De-Heredia U. L. and Vazquez-poletti J. L. (2016). RNA-seq analysis in forest tree species: bioinformatics problems and solutions. Tree Genetics and Genomics, 12: 30.
Diaz-Chavez M.L., Moniodis J., Madilao L.L., Jancsik S., Keeling C.I., Barbour E.L., Ghisalberti E.L., Plummer J.A., Jones C.G. and Bohlmann J. (2013). Biosynthesis of Sandalwood Oil: S. album CYP76F Cytochromes P450 Produce Santalols and Bergamotol. Plos One, 8(9): E75053.
Diningrat D.S., Widiyanto S.M., Pancoro A., Shim I.D., Panchangam B., Zembower N. and Carlson J.E. (2015). Transcriptome of Teak (Tectona grandis L. f) in vegetative to generative stages development. Journal of Plant Sciences, 10(1): 1-15.
Ding X., Mei W., Lin Q., Wang H, Wang J., Peng S., Li H., Zhu J., Li W., Wang P., Chen H., Dong W., Guo D., Cai C., Huang S., Cui P. and Dai H. (2020). Genome sequence of the agarwood tree Aquilariasinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family. Giga Science, 9(3): 1-10.
Du M., Ding G. and Cai Q. (2018). The Transcriptomic Responses of Pinus massoniana to Drought Stress. Forests, 9(6): 326.
Eisen M.B., Spellman P.T., Brown P.O. and Botstein D. (1998). Cluster analysis and display of genome-wide expression patterns. Protocol of Nature Academy Sciences, 95: 14863-14868.
Ekblom R. and Galindo J. (2011). Applications of next generation sequencing in molecular ecology of non-model organisms, Heredity, 107: 1-15.
Fox H., Faigenboim D., Kelley G., Bourstein R., Attia Z., Zhou J., Moshe Y., Moshelion M. and David-Schwartz R. (2017). Transcriptome analysis of Pinus halepensis under drought stress and during recovery. Tree Physiology, 38: 423-441.
Galeano E., Vasconcelos T.S., Vidal M., Guerra M.K.M. and Carrer H. (2015). Large-scale transcriptional profiling of lignified tissues in Tectona grandis, BMC Plant Biology, 15: 221.
Ge Y., Tan L., Wu B., Wang T., Zhang T., Chen H., Zou M., Ma F., Xu Z. and Zhan R. (2019). Transcriptome Sequencing of Different Avocado Ecotypes: De Novo Transcriptome Assembly, Annotation, Identification and Validation of ESTSSR Markers.Forests, 10: 411.
Geniza M. and Jaiswal P. (2017). Tools for building De Novo transcriptome assembly, Current Biology, 11(12): 41-45.
Gonzalez A.P., Marconi M., Simon I.C., Cea B.M., Perdiguero P., Linacero R., Linares J.C. and Gallego F.J. (2018). Abiespinsapo Boiss; Transcriptome Sequencing and Molecular Marker Detection: A Novel Genetic Resources for a Relict Mediterranean Fir. Forest Science, 64(6): 609-617.
Henschel R., Lieber M., Wu L., Nista P. M., Haas B. J. and Leduc R.X. (2012). Trinity: RNA-Seq assembler performance optimization. Proceedings of the 1st Conference of the Extreme Science and EngineerinG Discovery Environment: Bridging from the extreme to the campus and beyond, 1-2.
Hess M., Wildhagen H., Junker L.V. and Ensminger I. (2016). Transcriptome responses to temperature, water availability, and photoperiod are conserved among mature trees of two divergent Douglas-fir Provenances from a coastal and interior habitat. BMC Genomics, 17: 682.
Howe E., Sinha R., Schlauch D. and Quackenbush J. (2011). RNA-Seq analysis in MeV. Bioinformatics, 27(22): 3209-3210.
Hu Z., Zhang T., Gao X. X., Wang Y., Zhang Q., Zhou H. J., Zhao G. F., Wang M. L., Woeste K. E. and Zhao P. (2016). De novo assembly and characterization of the leaf, bud, and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing. Molecular Genetics and Genomes, 291: 849-862.
Kim D., Jung M., Ha I. J., Lee M. Y., Lee S. G., Shin Y., Subaramaniyam S. and Oh J. (2018). Transcriptional profiles of secondary metabolite biosynthesis genes and cytochromes in the leaves of four Papaver species. Data, 3(4): 55.
Kuravadi N, Yenagi V., Rangiah K., Mahesh H. B.,Rajamani A., Shirke M. D., Russiachand H., LoganathanR. M., Shankara, L. C., Siddappa, S., Ramamurthy, A., Sathyanarayana B. N. and Gowda M. (2015). Comprehensive analyses of genomes, transcriptomes and metabolites of Neem tree. Peer J, 3: e1066.
Konehis M. and Goto S. (2000). KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acid Research, 28 (1): 27-30.
Kukurba K.R. and Montgomery S.B. (2015). RNA sequencing analysis. Cold spring Horbor protocol. 11: 951-969.
Lane T., Best T., Zemower N. and Davitt J. (2016). The green ash transcriptome and identification of genes responding to abiotic and biotic stresses. BMC Genomics, 17: 702.
Lei X.Y., Xia J., Wang J.W. and Zheng L.P. (2018). Comparative Transcriptome Analysis Identifies Genes Putatively Involved in 20-Hydroxyecdysone Biosynthesis in Cyanotisarachnoidea. International Journal of Molecular Science, 19: 1885.
Li W. and Godzik A. (2006). CD-HIT: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22: 1658-1659.
Li M., Dong X., Peng J., Xu W., Ren R., Liu J., Cao F. and Liu Z. (2016). De novo transcriptome sequencing and gene expression analysis reveal potential mechanisms of seed abortion in dove tree (Davidia involucrata Baill.).BMC Plant Biology, 16:82.
Li W.F., Yang W.H., Zhang S.G., Han S.Y. and Qi L.W. (2017). Transcriptome analysis provides insights into wood formation during larch tree aging. Tree Genetics and Genomes, 13: 19.
Li M., Dong X., Peng J., Xu W., Ren R., Liu J., Cao F. and Liu Z. (2016). De novo transcriptome sequencing and gene expression analysis reveal and gene expression analysis reveal potential mechanisms of seed abortion in Dove tree (Davidia involucrate Baill). BMC Plant Biology, 16: 82.
Li W., Xu R., Yan X., Liang D., Zhang L., Qin X., Caiyin Q., Zhao G., Xiao W., Hu Z. and Qio J. (2018). De novo leaf and root transcriptome analysis to explore biosynthetic pathway of Celangulin V in Celastrus angulatus maxim. BMC Genomics, 20: 7.
Liu X., Wang X., Chen Z., Ye J., Liao Y., Zhang W., Chang J. and Xu F. (2019). De Novo assembly and comparative transcriptome analysis: novel insights into terpenoid biosynthesis in Chamaemelum nobile L. Plant Cell Reports, 38(1): 101-116.
Liu L., Han R., Yu N., Zhang W., Xing L., Xie D. and Peng D. (2018). A method for extracting high- quality total RNA from plant rich in polysaccharides and polyphenols using Dendrobium huoshanense. Plos One, 13(5): e0196592.
Liu J. P., Hu J., Liu Y. H., Yang C. P., Zhuang Y. F., Guo X. L., Li Y. J. and Zhang L. (2018). Transcriptome analysis of Hevea brasiliensis in response to exogenous methyl jasmonate provides novel insights into regulation of jasmonate-elicited rubber biosynthesis. Physiology Molecular Biology Plants, 24(3): 349-358.
Liu Y., Jiang Y., Lan J., Zou Y. and Gao J. (2014). Comparative Transcriptomic Analysis of the Response to Cold Acclimation in Eucalyptus dunnii, Plos One, 9(11): e113091.
Liu F. M., Hong Z., Yang Z. J., Zhang N. N., Liu X. J. and Xu D.P. (2019). De Novo Transcriptome Analysis of Dalbergia odorifera T. Chen (Fabaceae) and Transferability of SSR Markers Developed from the transcriptome Forests, 10: 98.
Lulu L., Han R., Yu N., Zhang W., Xing L., Xie D., Peng D.(2018). A method for extracting high-quality total RNA from plant rich in polysaccharides and polyphenols using Dendrobium huoshanense. Plos One, 13(5): e0196592.
Mahesh H. B., Subba P., Advani J., Shirke M. D., Loganthan R. M., Chandana S., Shilpa S., Chatterjee O., Pinto S. M., Prasad K., Gowda M.(2018).Multi-omics driven assembly and annotation of the Sandalwood (Santalum album) genome. Plant Physiology, 176(4): 2772-2788.
Metzker M. L. (2010). Sequence technologies the next generation. Nature Revert Genetics, 11(1): 31-46.
Mizrachi E., Hefer C. A., Ranik M., Joubert F., Myburg A. A. (2010). De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNASeq. BMC Genomics, 11: 681.
Moniodis J., Jones C. G., Barbour E. L., Plummer J. A., Ghisalberti E. L., Bohlmann J.(2015).The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum). Phytochemistry, 113: 79-86.
Montoro P., Wu S., Favreau B., Herlinawati E. (2018). Transcriptome analysis in Hevea brasiliensis latex revealed changes in hormone signaling pathways during etephon stimulation and consequent Tapping Panel Dryness. Scientific Reports, 8: 8483.
Moriya Y., Itoh M., Okuda S., Yoshizawa A. C., Kanehisa M. (2007). KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acid Research, 35: 182-185.
Mousavi S., Alisoltani A., Shiran B., Fallahi H., Ebrahimie E., Imani A., Houshmand S.(2014). De Novo Transcriptome Assembly and Comparative Analysis of Differentially Expressed Genes in Prunusdulcis Mill in Response to Freezing Stress. Plos One, 9(8): e104541.
Muller M., Seifert S., Lubbe T., Leuschner C., Finkeldey R.(2017). De novo transcriptome assembly and analysis of differential gene expression in response to drought in European beech. Plos One, 12(9): e0184167.
Neale D. B. and Kremer A.(2011). Forest tree genomics: growing resources and applications. Nature Revert Genetics, 12(2): 111-22.
Ouyang K,. Li J., Zhao X., Que Q., Li P., Huang H., Deng X., Singh S. K., Wu A. M., Chen X.(2016). Transcriptomic Analysis of Multipurpose Timber Yielding Tree Neolamarckia cadamba during Xylogenesis Using RNA-Seq. Plos One, 11(7): e0159407.
Pandreka A., Dandekar D. S., Haldar S., Uttara V., Vijayshree S. G., Mulani F. A., Aarthy T., Thulasiram H. V.(2015). Triterpenoid profiling and functional characterization of the initial genes involved in isoprenoid biosynthesis in neem (Azadirachta indica). BMC Plant Biology, 15: 214
Parchman T. L., Geist K. S., Grahnen J. A., Benkman C. W., Buerkle, C. A. (2010). Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics, 11:180.
Qiu Q., Ma T., Hu Q., Liu B., Wu Y., Zhou H., Wang Q., Wang J., Liu J.(2011).Genome scale transcriptome analysis of the desert Poplar Populus euphratica, Tree Physiology, 31: 452-461.
RaiH. S., Mock K. E., Richardson B. A., Cronn R. C., Hayden K. J., Wright J. W., Knaus B. J., Wolf P. G. (2013). Transcriptome characterization and detection of gene expression differences in aspen (Populus tremuloides).Tree Genetics and Genomics, 9: 1031-1041.
Rocheta M., Sobral R., Magalhaes J., Amorim M. I., Ribeiro T., Pinheiro M., EgasC., CecilioL. M., Costa M. M. R. (2014). Comparative transcriptomic analysis of male and female flowers of monoecious Quercus suber. Frontiers of Plant Sciences, 5: 599.
Rubio-Pina J. A. and Zapata-Perez O. (2011).Isolation of total RNA from tissues rich in polyphenols and polysaccharides of mangrove plants. Electronic Journal of Biotechnology, 14: 5.
Santosh P. and Arakera S. B. (2017). Total RNA Isolation and cDNA synthesis from Bixa orellana bark. Research in Plant Biology, 7: 01-04.
Shuai P., Liang P., Tang S., Zhang Z., Ye C. Y., Su Y., Xia X., Yin W. (2014). Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. Journal of Experimental Botany, 65 (17): 4975- 4983.
Simon A. and Huber W. (2012).Differential expression of RNA-Seq data at the gene level-the DESeq package. Heidelberg, Germany: European Molecular Biology Laborator (EMBL).
Solis M., Salas A., Lagos C., Valenzuela S., Emhart V., Fernandez M. (2019). De Novo Transcriptome Assembly of Eucalyptus nitens and the Expression of R2R3-MYB Genes in Response to Cold Acclimation in Eucalyptus Spp. Plant Molecular Biology Reports,1-13.
Srivastava P.L., Daramwar P.P., Krithika R., Pandreka A., Shankar S.S., Thulasiram H.V. (2015). Functional characterization of Novel Sesquiterpene Synthases from Indian Sandalwood. Santalum album, Scientific Reports,5: 10095.
Torales S.L., Rivarola M., Gonzalez S., Inza M.V., Pomponio M. F., Fernandez P., Acuna C. V., Zelener N., Fornes L., Hopp H. E., Paniego N. B., Poltri S. N. M. (2018). De novo transcriptome sequencing and SSR markers development for Cedrelabalansae C. D C., a native tree species of northwest Argentina. Plos One, 13 (12): e0203768.
Torre S., Tattini M., Brunetti C., Fineschi S., Fini A., Ferrini F., Sebastiani F.(2014). RNA-Seq analysis of Quercus pubescens leaves: De Novo transcriptome assembly annotation and functional marker development. Plos One, 9(11): e112487.
Ueno S., Nakamura Y., Kobayashi M., Terashima S., Ishizuka W., Uchiyama K., Tsumura Y., Yano K., Goto S. (2018). Todo FirGene: Developing Transcriptome Resources for Genetic Analysis of Abies sachalinensis. Plant Cell Physiology, 59(6): 1276-1284.
Vaillant A., Honvault A., Bocs S., Summo M., Makouanzi G., Vigneron P., Bouvet J. M. (2018). Genetic effect in leaf and xylem transcriptome variations among Eucalyptus urophylla x grandis hybrids in field conditions. Silvae Genetica, 67: 57-65.
Visser E.A., Wegrzyn J.L., Steenkmap E.T., Myburg A.A., Naidoo S. (2015). Combined de novo and genome guided assembly and annotation of the Pinus patula juvenile shoot transcriptome. BMC Genomics, 16: 1057.
Wang Z, Gerstein M, Snyder M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Revolution Genetics, 10 (1): 57-63.
Wang Y., Chen X., Wang J., Xun H., Sun J., Tang F. (2016). Comparative analysis of the terpenoid biosynthesis pathway in Azadirachta indica and Melia azedarach by RNA-seq. Springer Plus, 5: 819.
Wang S., Zhang H., Li X., Zhang J. (2016). Gene expression profiling analysis reveals a crucial gene-regulating metabolism in adventitious roots of neem (Azadirachta indica). Royal Society of Chemistry, 6(115): 114889-114898.
Wang C., Zhu J., Liu M., Yang Q., Wu J., Li Z. (2018). De novo Sequencing and transcriptome assembly of Arisaema heterophyllum Blume and identification of genes involved in isoflavonoid biosynthesis. Scientific Reports, (8): 17643.
Wang H., Ma D., Yang J., Deng K., Li M., Ji X., Zhong L., Zhao H.(2018). An Integrative Volatile Terpenoid Profiling and Transcriptomics Analysis for Gene Mining and Functional Characterization of AvBPPS and AvPS Involved in the Monoterpenoid Biosynthesis in Amomumvillosum. Frontiers of Plant Science, 9: 846.
Wilwerth M.W., Rossetto P.D.B., Reinert F., Peixoto R. S., Ferreir M.A. (2016). Efficient RNA extraction protocol for the wood mangrove species Laguncularia racemosa suited for next-generation RNA sequencing. Pakistan Journal of Botany, 48 (2): 661-672.
Xanthopoulou A., Psomopoulos F., Ganapoulos I., Manioudaki M., Tsaftaris A., Nianiou-Obeidat I., Madesis P. (2016). De novo transcriptome assembly of two contrasting pumpkin cultivars. Genomics Data, 7: 200-201.
Xu Y., Zhang Z., Wang M., Wei J., Chen H., Gao Z., Sui C., Luo H., Zhang X., Yang Y., Meng H., Li W. (2013). Identification of genes related to agarwood formation: transcriptome analysis of healthy and wounded tissues of Aqularia sinensis. BMC Genomics, 14: 227.
Yan X., Qian C., Yin X., Fan X., Zhao X., Gu M., Wang T., Ma X.F. (2018). A whole-transcriptome approach to evaluate reference genes for quantitative diurnal gene expression studies under natural field conditions in Tamarixramosissimaleaves. Electronic Journal of Biotechnology, 35: 48-56.
Ye G., Zhang H., Chen B., Nie S., Liu H., Gao W., Wang H., Gao Y., Gu L. (2018).De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth. The Plant Journal, 97 (4): 779-794.
Yasodha R., Vasudeva R., Balakrishnan S., Sakthi A. R., Abel N., Binai N., Rajashekar B., Bachpai V. K. W., Pillai C., Dev S. A.(2018). Draft genome of a high value tropical timber tree, Teak (Tectona grandis L. f): insights into SSR diversity, phylogeny and conservation. DNA Research, 25(4): 409-419.
Ye J., Zhang Y., Cui H.,Liu J., Wu Y., Cheng Y., Xu H., Huang X., Li S., Zhou A., Zhang X., Bolund L., Chen Q., Wang J., Yang H., Fang L., Shi S. (2018). WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acid Research, 46: 71-75.
Ye W., Wu H., He X., Wang L., Zhang W., Li H., Fan Y., Tan G., Liu T., Gao X.(2016). Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation. Plos One, 11(5): e0155505.
Yeh J., Fang L., Zheng H., Zhang Y., Chen J., Zhang Z., Wang J., Li S., Li R., Bolund L., Wang J.(2006). WEGO: a web tool for plotting GO annotations. Nucleic Acid Research, 34: 293-297.
Yu N., Yang J. C., Yin G. T., Li R. S., Zou W. T. (2018). Transcriptome analysis of Oleoresin-Producing Tree Sindora Glabra and characterization of sesquiterpene synthases. Frontiers of Plant Science, 9: 1619.
Zhang H, B., Xia E. H., Huang H., Jiang J. J., Liu B. Y., Gao L.Z. (2015). De novo transcriptome assembly of the wild relative of tea tree (Camellia taliensis) and comparative analysis with tea transcriptome identified putative genes associated with tea quality and stress response. BMC Genomics, 16: 298.
Zhang X., Berkowitz O., Silva J. A. T. D., Zhang M., Ma, G., Whelan, J., Duan, J. (2015). RNA-Seq analysis identifies key genes associated with haustorial development in the root hemiparasite Santalum album,Frontiers Plant Science, (6): 6.
Zhang L., Ren J., Wang A., Tan D. (2016).De novo transcriptome sequencing of cold treated Kentucku Bluegrass (Poa pratensis) and analysis of the genes involved in cold tolerance. Journal of Horticulture, 3: 3.
Zhang Q. P., Liu D. C., Liu S., Liu N., Wei X., Zhang A. M., Liu W. S.(2014). Genetic diversity and relationships of common apricot (Prunus armeniaca L.) in China based on simple sequence repeat (SSR) markers. Genetics Research Crop Evolution, 61: 357-368.
Zhang X., Jaime A., Silva T. D., Ma G. (2017). Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leave. Scientific Reports, 7: 42165.
Zhang Y., Han X., Sang J., He X., Liu M., Qiao G., Zhuo R., He G., Hu J. (2016). Transcriptome analysis of immature xylem in the Chinese fir at different developmental phases. Peer J, 4:e2097.
ZhaoF., Sun M., Zhang W., Jiang C., Teng J., Sheng W., Li M., Zhang A., Duan Y., Xue J. (2018). Comparative transcriptome analysis of roots, stems and leaves of Isodon amethystoides reveals candidate genes involved in Wangzaozins biosynthesis. BMC Plant Biology, 18: 272.
Zheng L., Meng Y., Ma J., Zhao, X., Cheng, T., Ji J, Chang, E., Meng, C., Deng, N., Chen, L., Shi, S., Jiang,Z. (2015). Transcriptomic analysis reveals importance of ROS and phytohormones in response to short-term salinity stress in Populus tomentosa, Frontiers in Plant Science, 6: 678.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Unless otherwise stated, copyright or similar rights in all materials presented on the site, including graphical images, are owned by Indian Forester.