Conserving Bhitarkanika Mangroves for Sustainable Blue Economy
DOI:
https://doi.org/10.36808/if/2025/v151i9/170894Keywords:
Bhitarkanika Wildlife Sanctuary, Mangroves, Blue carbon, Blue economy, Carbon dioxide equivalent.Abstract
The study quantifies the Above Ground Biomass (AGB) and Above Ground Carbon (AGC) of Bhitarkanika mangroves to assess their potential for Payment for Ecosystem Services (PES) and carbon credit valuation. Analysis of four dominant species viz. Avicennia marina, Avicennia officinalis, Excoecaria agallocha, and Rhizophora mucronata in five selected stations revealed significant seasonal and spatial variations (p < 0.05) Average AGB over a period of 5 years (2017-2022) was highest in A. (190.412±12.49 t.ha-1) followed by E. agallocha (66.94±3.94 t.ha-1), A. marina (30.06±1.98 t.ha-1) and R. mucronata (29.57±1.25 t.ha-1) with stilt roots contributing 34.14±16.10%. Average AGC followed a similar trend, with maximum carbon storage at Station 2 (93.30±10.07 t.ha-1) and minimum at station 5 (13.01±1.97 t.ha-1) due to drastic variation in salinity and pH. Average sediment organic carbon (SOC) values over a period of 5 years ranged from 23.56±2.76 t.ha-1 to 56.48±8.22 t.ha-1. Rate of carbon sequestration of mangroves along with SOC is 9,954.27 t.ha-1yr-1 with annual CO2 equivalent of 36532.17 tones. Considering the Bhitarkanika mangrove ecosystem as a whole, the carbon stock is estimated to be 33.44 TgC which is equivalent to 122.74 Tg CO2 Economic valuation indicated a carbon credit worth $1.23 billion annually establishing a national minimum price on carbon pollution $50 in 2022 per ton. These findings emphasize Bhitarkanika's role as a crucial carbon sink, supporting SDG 13 climate goals and blue economy through conservation-driven carbon trading opportunities.
References
Ahmed S., Pramanick P., Zaman S. and Mitra A. (2024). Spatial Variability in Carbon Storage Among Dominant Mangrove Species in the Indian Sundarbans. In Forests and Climate Change: Biological Perspectives on Impact, Adaptation, and Mitigation Strategies (pp. 691-707). Singapore: Springer Nature Singapore.
Alimbon J.A. and Manseguiao M.R.S. (2021). Species composition, stand characteristics, aboveground biomass, and carbon stock of mangroves in Panabo Mangrove Park, Phppnes. Biodiversitas Journal of Biological Diversity,22(6).
Alongi D.M. (2011). Carbon payments for mangrove conservation: Ecosystem constraints and uncertainties of sequestration potential. Environmental Science & Policy, 14(4): 462-470. https://doi.org/10.1016/j.envsci.2010.11.004
Alongi D.M., Boto K.G. and Robertson A.I. (1992). Nitrogen and phosphorus cycles. In A. I. Robertson & D. M. Alongi (Eds.), Tropical mangrove ecosystems (pp. 251-292). American Geophysical Union, https://d0i.org/10.1029/CE041p0251
Bai G. and Banerjee K. (2019). Carbon storage potential of tropical wetland forests of South Asia: A case study from Bhitarkanika Wildlife Sanctuary, India. Environmental Monitoring and Assessment, 191(Suppl 3): 795-816. https://d0i.0rg/l 0.1007/si 0661 -019-7825-6
Banerjee K., Bal G. and Mitra A. (2018). How soil texture affects the organic carbon load in the mangrove ecosystem? A case study from Bhitarkanika, Odisha. In V. P. Singh, S. Yadav, & R. M. Yadava (Eds.). Environmental Pollution (pp. 329-341). Springer Nature Singapore Pvt Ltd. https://doi.org/10.1007/ 978-981-10-5792-2J 8
Banerjee K., Sahoo C.K., Bal G., Mallik K., Paul R. and MitraA. (2020). High blue carbon stock in mangrove forests of Eastern India. Tropical Ecology, 61(1): 150-167.
Bhomia R.K., MacKenzie R.A., Murdiyarso D., Sasmito S.D. and Purbopuspito J. (2016). Impacts of land use on Indian mangrove forest carbon stocks: Implications for conservation and management. Ecological Applications, 26(5): 1396-1408.
Giri C., Ochieng E., Tleszen L.L., Zhu Z., Singh A., Loveland T. and DukeN. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global ecology and biogeography, 20(1): 154-159.
Hebbalalu S.S., Nijavalli R.H. and Raman S. (2014). Diversity, structure and dynamics of a mangrove forest: a case study. Notulae Scientia Biologicae, 6(3): 300-307.
Higgins J.A., Kurbatov A.V., Spaulding N.E., Brook E. and Introne D.S. (2015). Atmospheric composition 1 million years ago from blue ice in the Ailan Hills, Antarctica. Proceedings of the National Academy of Sciences, 112(22): 6887-6891. https://doi.org/10.1073/pnas.1420232112
Kathiresan K and Brian L. Bingham (2001). Biology of mangroves and mangrove ecosystems. 81 -251.
Kauffman J.B. and Donato D.C. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests (Vol. 86, p. 7). Bogor, Indonesia: Cifor.
Kida M., Watanabe I., Kinjo K., Kondo M., Yoshitake S., Tomotsune M. and Fujitake N. (2021). Organic carbon stock and composition in 3.5-m core mangrove soils (Trat, Thailand). Scienceofthe Total Environment, 801:149682.
Komiyama A., Ong J.E. and Poungpam S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic botany, 89(2): 128-137.
Le Quere C.L., Andrew R.M., Friedlingstein P., Sitch S. and Zheng B. (2018). Global carbon budget 2018. Earth System Science Data, 10: 2141-2194. https://doi.org/10.5194/essd10-2141-2018
Li T , Liang J., Chen X., Wang H„ Zhang S. and Pu Y (2024). The interacting roles and relative importance of climate, topography, soil properties and mineralogical composition on soil potassium variations at a national scaie in China. Catena, 196:104875. https://doi.org/10.1016/j.catena.2020.104875
Mamidala H.P., Ganguly D., Purvaja R., Singh G., Das S. and Rao IVI.N. (2023). Interspecific variations in leaf litter decomposition and nutrient release from tropical mangroves. Journal of Environmental Management, 328: 116902. https://doi.Org/10.1016/j.jenvman.2023.116902
Mitra S., Chanda A., Das S., Ghosh T. and Hazra S. (2021). Salinity dynamics in the Hooghly-IVIatIa estuarine system and its impact on the mangrove plants of Indian Sundarbans. In Sundarbans Mangrove Systems (pp. 305-328). CRC Press. https://doi.org/10.1201/9781003159843-17
Murdiyarso D., Purbopuspito J., Kauffman J.B., Wamen M.W. and Sasmito S.D. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Letters, 1 :1 ^ . https://doi.org/10.1111/gcb.12898
Natarajan M. and Ayyappan S. (2022). Carbon stock assessment on natural mangrove species of Avicennia marina in Pichavaram mangrove forest Southeast coast of India.
National Oceanic and Atmospheric Administration (NOAA). (2019, June 20). Mauna Loa Observatory, Hawaii. Retrieved from https://www.co2.earth
Perez A., Libardon B.G. and Sanders C.J. (2018). Factors influencing organic carbon accumulation in mangrove ecosystems. Biology Letters, 14: 20180237. https://doi.org/10.1098/rsbl.2018.0237
Sahoo K., Jee P.K., Dhal N.K. and Das R. (2017). Physicochemical sediment properties of mangrove of Odisha, India. Journal of Ocean and Marine Science, 5(2): 1-8.
Singh S. and Shanmugam S. (2020). Carbon stock estimation in Pichavaram mangrove forest. Tamil Nadu, India. Life Sciences Leaflets, 125:14-22.
Tamai S., Nakasuga T , Tabuchi R. and Ogino K. (1986). Standing biomass of mangrove forests in southern Thailand. Journal ofthe Japanese Forestry Society, 68:384-388.
Thammanu S., Han H., Marod D„ Srichaichana J. and Chung J. (2021). Above-ground carbon stock and REDD+ opportunities of community-managed forests in northern Thailand. PLoS One, 16(8): e0256005.
Woltz V.L., Peneva-Reed E.I., Zhu Z., Bullock E.L., MacKenzie R.A., Apwong IVI. and Gesch D.B. (2022). A comprehensive assessment of mangrove species and carbon stock on Pohnpei, MIicronesia. Piosone, 17(7):e0271589.
Zhai P., PortnerH.O., Roberts D., Skea J.. Shukla PR., PiraniA. and Waterfield T (2018). Global Warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Sustainable Development, and Efforts to Eradicate Poverty, 32.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Unless otherwise stated, copyright or similar rights in all materials presented on the site, including graphical images, are owned by Indian Forester.