Adaptive Physiological Response of Parthenium hysterophorus to Elevated Atmospheric CO2 Concentration

Adaptive Physiological Response of Parthenium hysterophorus to Elevated Atmospheric CO2 Concentration

Authors

  •   Hukum Singh   Forest Research Institute, P.O. New Forest, Dehradun – Uttarakhand
  •   Rupali Sharma   Forest Research Institute, P.O. New Forest, Dehradun – Uttarakhand
  •   Savita   Forest Research Institute, P.O. New Forest, Dehradun – Uttarakhand
  •   Madan Prasad Singh   Forest Research Institute, P.O. New Forest, Dehradun – Uttarakhand
  •   Manoj Kumar   Forest Research Institute, P.O. New Forest, Dehradun – Uttarakhand
  •   Amit Verma   Department of Biochemistry, College of Basic Sciences and Humanities, S.D. Agricultural University, S.K. Nagar, Gujarat
  •   Mohammad Wahid Ansari   Department of Botany, Zakir Hussain College, University of Delhi, New Delhi
  •   Mridula Negi   Forest Research Institute, P.O. New Forest, Dehradun – Uttarakhand
  •   Satish Kant Sharma   Forest Research Institute, P.O. New Forest, Dehradun – Uttarakhand

DOI:

https://doi.org/10.36808/if/2018/v144i1/121296

Keywords:

Adaptive Physiological Response, Growth Dynamics, Elevated CO2, Parthenium hysterophorus, Weed.

Abstract

Parthenium hysterophorus, a harmful weed, is a potential threat to agricultural productivity of various crops. An experiment was performed to analyze the physiological adaptation of P. hysterophorus grown under ambient and elevated atmospheric CO2 concentration (800 μ mol mol-1 ) using Open Top Chamber (OTC) approach. Under elevated CO2 conditions, it showed improved plant height and diameter, leaf fresh and dry weight, leaf moisture content, leaf length and leaf area, root length, leaf area index, specific leaf area, shoot fresh and dry weight, root fresh and dry weight and total dry biomass as compared to plants retained under ambient condition. Likewise, the photosynthetic rate and water use efficiency was also increased. The elevated CO2 had profound impact on reduction of stomatal conductance and transpiration rate of plants when compared to ambient conditions. The present findings suggest that elevated CO2 mediated improved intrinsic water use efficiency; intercellular CO2 concentration, intrinsic carboxylation efficiency, intrinsic mesophyll efficiency, biomass production and tissue carbon allocation which prolongs plant growth and development, and thereby better weed adaptability under changing climatic scenario especially rising atmospheric CO2 concentration. Thus, P. hysterophorus spread requires major concern in biological research to restrict its expansion in future predicted climate change scenario to sustain agricultural as well as forest productivity.

References

Ainsworth E.A. (2008). Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biol., 14:1642-1650.

Ainsworth E.A. and Long S.P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol., 165:351-372.

Ainsworth E.A. and Rogers A. (2007). The response of photosynthesis and stomatal conductance to rising (CO2): mechanisms and environmental interactions. Plant Cell and Environ., 30:258-270.

Assmann S.M. (1999). The cellular basis of guard cell sensing of rising CO2. Plant Cell and Environ., 59: 629-637. Bond J.A. and Oliver L.R. (2006). Comparative growth of palmer amaranth (Amaranthus palmeri) accessions. Weed Sci., 54:121-126.

Boote K.B., Jones J.W. and Pickering N.B. (1996). Potential uses and limitations of crop models. Agron. J., 88:704-716.

Cockran W.G. and Cox G.M. (1957). Experimental designs. In: 2nd Edi. New York, J. Wiley & Sons.

Cordoba J., Pereza P., Morcuendea R., Molina-Cano J.L. and Martinez-Carrasco R. (2017). Acclimation to elevated CO is improved by low Rubisco and carbohydrate content, and enhanced Rubisco transcripts in the G132 barley mutant. Environ. Exp. Bot., 137:36-48.

De Graaff M.A., van Groeningen J., Six J., Hungate B. and Kessel C.V. (2006). Interactions between plant growth and nutrient dynamics under elevated CO2: a meta-analysis. Global Change Biol., 12:1-15.

Field C.B. (2001). Plant physiology of the “missing†carbon sink. Plant Physiol., 125:25-28.

Garnier E., Laurent G., Bellmann A., Debain S., Berthelier P., Ducout B., Roumet C. and Navas M.L. (2001). Consistency of species ranking based on functional leaf traits. New Phytol., 152:69-83.

Ghildiyal M.C., Rafique S. and Sharma-Natu P. (2001). Photosynthetic acclimation to elevated CO2 in relation to leaf saccharide constituents in wheat and sunflower. Photosynthetica, 39:447-452.

Gower S.T., Vogel J.G., Norman J.M., Kucharik C.J., Steele S.J. and Stow T.K. (1997). Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J. Geophysical Res., 102:2902929041.

Hager H.A., Ryan G.D., Kovacs H.M. and Newman, J. A. (2016). Effects of elevated CO2 on photosynthetic traits of native and invasive C3 and C4 grasses. BMC Ecol. DOI. 10.1186/s12898-016-0082-z

Harvey G.J. (1996). Parthenium hysterophorus - literature review. In: Mimeo. (Queensland Dep.): Lands, Sherwood, Queensland Horak M.J. and Loughin T.M. (2000). Growth analysis of four Amaranthus species. Weed Sci., 48:347-355.

IPCC (2007). Inter Governmental Panel on Climate Change. Summary Report of the working group of IPCC, Paris.

Jarvis A.J., Mansfield T.A. and Davies W.J. (1999). Stomatalbehaviour, photosynthesis and transpiration under rising CO2. Plant Cell and Environ., 22:639-648.

Kvet J., Ondok J.P., Necas J. and Jarvis P.G. (1971). Methods of Growth Analysis. In: Plant Photosynthetic Production. Manual of Methods (Sestak Z, Catsky J, Jarvis PG eds). Dr. W. Junk Publ., The Hague, 343-391pp.

Long S.P., Ainsworth E.A., Leakey A.D.B., Nosberger J. and Ort D.R. (2006). Food for thought: Lower-than-expected crop yield stimulation with rising CO concentrations. Science, 312:1918-1921. 2

McFadyen R. (2008). Invasive plant and climate change. In: Weeds, CRC Briefing Notes, CRC Press.

Medrano H., Tomás M., Martorell S., Flexas J., Hernández E., Roselló J., Pou A., Escalona J.M. and Bota J. (2015). From leaf to whole-plant water use efficiency (WUE) in complex canopies. Limitations of leaf WUE as a selection target. Crop J., 3: 220:228.

Naidu V.S.G.R. (2013). Invasive potential of C3-C4 intermediate Parthenium hysterophorusunder elevated CO2. Ind. J. of Agricul. Sci., 83:176-179.

Naidu V.S.G.R. and Murthy T.G.K. (2014). Crop-weed interactions under climate change. Ind. J. Weed Sci., 46:61-65.

Naidu V.S.G.R. and Paroha S. (2008). Growth and biomass partitioning in two weed species, Parthenium hysterophorus (C3) and Amaranthus viridis (C4) under elevated CO2. Ecol. Environ. Conser., 14:9-12.

Navie S.C., Mcfadyen R.E., Panetta F.D. and Adkins S.W. (2005). The effect of CO enrichment on the growth of a C3 weed (Parthenium 2 hysterophorus L.) and its competitive interaction with a C4 grass (Cenchrus ciliaris L.). Plant Protec. Quarterly, 20:61-66.

Nguyen T., Bajwa A.A., Navie S., O’Donnell, C. and Adkins, S. (2017). Parthenium weed (Parthenium hysterophorus L.) and climate change: the effect of CO concentration, temperature, and water deficit on growth and reproduction of two biotypes. Environ. Sci. Pollut. Res. 2 Int., DOI: 10.1007/s11356-017-8737-7

Norby R.J. and Zak D.R. (2011). Ecological lessons from free-air CO enrichment (FACE) experiments. Ann. Rev. Ecol. Evolution Sys., 42:181- 2 203.

Norby R.J., DeLucia E.H., Gielen B., Calfapietra C., Giardina C.P., King J.S., Ledford J., McCarthy H.R., Moore D.J.P., Ceulemans R., Angelis P.D., Finzi A.C., Karnosky D.F., Kubiske M.E., Lukac M., Pregitzer K.S., Scarascia-Mugnozza G.E., Schlesinger W.H. and Oren R. (2003). Forest Response to Elevated CO2 is conserved across a broad range of productivity. Proc. National. Acad. Science, 102:18052-8056. Pandey S.K. and Singh H. (2011). A simple, Cost-effective method for leaf area estimation. J. of Bot., 2011:1-6.

Pandy D.K., Palni S. and Joshi S.C. (2003). Growth, reproduction, and photosynthesis of Ragweed parthenium (Parthenium hysterophorus). Weed Sci., 51:191-201.

Paustian K., Six J., Elliott E.T. and Hunt H.W. (2000). Management options for reducing CO2 emissions from agricultural soils. Biogeochem., 48:147-163.

Poorter H. (1993). Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. CO2 and Biosphere. Dordrecht, Netherlands: Kluwer Acad. Publications.

Poorter H. and Van der Werf A. (1998). Is inherent variation in RGR determined by LAR at low irradiance and by NAR at high irradiance? A review of herbaceous species. New Phytol., 143:155-162.

Power J.F., Willis W.O., Grunes O.L. and Reichman G.A. (1967). Effect of soil temperature, phosphorus and plant age on growth analysis of barley. Agron. J., 59:231- 234.

Radford P.J. (1967). Growth analysis formulae - their use and abuse. Crop Sci., 7:171-175.

Rae A.M., Tricker P.J., Bunn S.M. and Taylor G. (2007). Adaptation of tree growth to elevated CO2 : quantitative trait loci for biomass in Populus. New Phytol., 175:59-69.

Rajendrudu G. and Rama Das V.S. (1990). C3-like carbon isotope discrimination in C3–C4 intermediate Alternenthera and Parthenium species. Current Sci., 59:377-379.

Ramalho J.C., Rodrigues A.P., Semedo J.N., Pais I.P., Martins L.D., Simões-Costa1 M.C., Leitão1 A.E., Fortunato A.S., Batista-Santos P., Palos I.M., Tomaz M.A., Scotti-Campos P., Lidon F.C., DaMatta F.M. (2013). Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2 ]. PLoS ONE, doi:10.1371/journal.pone.0082712.

Saravanan S. (2014). Gas exchange characteristics in Tectona grandis L. clones under varying concentrations of CO2 levels. Stress Physiol. Biochem., 10:122-133.

Sattler R. and Rutishauser R. (1997). The fundamental relevance of morphology and morphogenesis to plant research. Annals Bot., 80:571-582.

Shabbir A., Dhileepa K., Khan N. and Adkins S.W. (2014). Weed-pathogen interactions and elevated CO2 : growth changes in favour of the biological control agent. Weed Res., 54:217-222.

Shipley B. and Vu T.T. (2002). Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol., 153:359-364.

Singh H., Savita, Sharma R., Sinha S., Kumar M., Kumar P., Verma A. and Sharma S.K. (2017). Physiological functioning of Lagerstroemia speciosa L. under heavy roadside traffic: an approach to screen potential species for abatement of urban air pollution. 3 Biotech, DOI 10.1007/s13205-017-0690-0

Stulen I. and den Hertog J. (1993). Root growth and functioning under atmospheric CO2 enrichment. Vegetation, 104:99-115,

Taylor G., Ranasinghe S., Bosac C., Gardner S.D.L. and Ferris R. (1994). Elevated CO2 and plant growth: cellular mechanisms and responses of whole plants. J. Experi. Bot., 45:1761-1774.

Warren J.M., Norby R.J. and Wullschleger S.D. (2011). Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol., 31:117-130.

Warrier R.R., Jayaraj, R.S.C. and Balu A. (2013). Variation in gas exchange characteristics in clones of Eucalyptus ñamaldulensis under varying conditions of CO2 J. Stress Physiol. Biochem., 9:333-344.

Williams R.F. (1946). The physiology of plant growth with special reference to the concept of net assimilation rate. Annals of Bot., 10:41-72.

Wu J., Hong J., Wang X., Sun J., Lu X., Fan J. and Cai Y. (2013). Biomass partitioning and its relationship with the environmental factors at the Alpine steppe in Northern Tibet. PLoS ONE, DOI:10.1371/journal.pone.0081986.

Ziska L.R. (2001). Changes in competitive ability between a C4 crop and a C3 weed with elevated carbon dioxide. Weed Sci., 49:622-627.

Ziska L.R. (2002). Influence of rising atmospheric CO2 since 1900 on early growth and photosynthetic response of a noxious invasive weed, Canada thistle (Cirsium arvense). Fun Plant Biol., 29:1387-1392.

Downloads

Download data is not yet available.

Published

2018-01-01

How to Cite

Singh, H., Sharma, R., Savita, ., Singh, M. P., Kumar, M., Verma, A., … Sharma, S. K. (2018). Adaptive Physiological Response of <I>Parthenium hysterophorus</I> to Elevated Atmospheric CO<sub>2</sub> Concentration. Indian Forester, 144(1), 6–19. https://doi.org/10.36808/if/2018/v144i1/121296

Most read articles by the same author(s)

1 2 3 4 > >> 
Loading...