Pollution Tolerance of Selected Tree Species in Urban Landscapes of Hyderabad, Telangana

Pollution Tolerance of Selected Tree Species in Urban Landscapes of Hyderabad, Telangana

Authors

  •   Bharati Patel   Institute of Forest Biodiversity, Hyderabad-500100
  •   Mula Bharat Kumar   Forest Research Institute, Dehradun (Uttarakhand)
  •   Pankaj Singh   Institute of Forest Biodiversity, Hyderabad-500100

DOI:

https://doi.org/10.36808/if/2024/v150i12/169428

Keywords:

APTI, API, Air Pollution, Hyderabad, Green Infrastructure.

Abstract

Industrialization and urbanization are important for economic and socio-ecological development of a region and a nation, but poor planning infiltrates many problems degrading the livability of urban and semi-urban landscapes. One such problem is air pollution which also confounds with other problems such as water and soil pollution and correlated with numerous health problems. Vehicle emission and poor management of industrial effluents are most highlighted causes of air pollution and Increasing atmospheric warming. For effective management of air pollutants and green-house gases (GHG) especially in the urban landscape green infrastructure and green belt development have been identified as key solution. The key to improve the capacity of these green structures for curbing the pollutants and GHGs lies in the performance of plant species. One of the ways to select the best performing plants and trees for such green structures is their tolerance to air pollution often measured with the help of Air Pollution Tolerance index (APTI) and Anticipated Performance Index (API). The present study Involved estimation of APTI and API for selected tree species in three urban landscapes of Hyderabad (Telangana) under different pollution levels. The study identifies and recommends the species more suitable for green infrastructures in and around Hyderabad.

References

Agarwal M., Singh S.K., Singh J. and Rao D.N. (1991). Biomonitoring of air pollution around industrial sites. J. Environ. Biol., 12:211-222.

Agarwal S.K. (1986). A new distributional function of foliar phenol concentration in the evaluation of plants for their air pollution tolerance index. Acta. Ecol., 8(2): 29-36.

Akbar S. (2021). Hyderabad had bad air quality 8 months last year, report says The Times of India, Hyderabad, 17 March 2021. Retrieved from, https://timesofindia.indiatimes.com/city/hyderabad/city-had-bad-air-quality-8-months-last-year-says-report/articleshow/81538607.cms. Accessed 01/06/2021.

Alstad D.N. Edmunds Jr, G.F. and Weinstein L.H. (1982). Effects of air pollutants on insect populations. Annual Review of Entomology, 27(1): 369-384. DOI: https://doi.org/10.1146/annurev.en.27.010182.002101

Accuweather (2021). Weather data, accuweather of Hyderabad- May 2021, retrieved from the internet https://www.accuweather.eom/en/in/hyderabad/202190/may-weather/202190, Accessed -27th May, 2021

AQI. (2021). Air Quality Index Hyderabad, Data file, APA-Air quality Index, CPCB, retrieved from the internet, https://ncdc.gov.in/cpcbaqi.php. Accessed- 27th May, 2021.

Arora A., Sairam R.K. and Srivastava G.C. (2002). Oxidative stress and antioxidative system in plants. Cum Sci., 82(10): 1227-1238.

Balasubramanian A., Prasath C.H., Gobalakrishnan K. and Radhakrishnan S. (2018). Air pollution tolerance index (APTI) assessment in tree species of Coimbatore urban city, Tamil Nadu, India. IntJEnvClim Change, 8:27-38. DOI: https://doi.org/10.9734/ijecc/2018/v8i127106

Baranyai E., Simon E., Braun M., Posta J., Tothmeresz B. and Febian I. (2015). The effect of a fireworks event on the amount and elemental concentration of deposited dust collected in the city of Debrecen, Hungary. Air Qual. Atmos. Health, 8(4): 359­365. DOI: https://doi.org/10.1007/s11869-014-0290-7

Begum A. and Harikrishna S. (2010). Evaluation of some tree species to absorb air pollutants in three industrial locations of South Bengaluru, India. E-Journal of chemistry, 7(S1): S151-S156. DOI: https://doi.org/10.1155/2010/398382

Bharti S.K., Trivedi A. and Kumar N. (2018). Air pollution tolerance Index of plants growing near an industrial site. Urban Clim., 24:820-829. DOI: https://doi.org/10.1016/j.uclim.2017.10.007

Bussotti F. and Pollastrini, M. (2021). Revisiting the concept of stress in forest trees at the time of global change and issues for stress monitoring. Plant Stress, 2:100013. DOI: https://doi.org/10.1016/j.stress.2021.100013

Bytnerowicz A. and Grulke N.E. (1992). Physiological Effects of Air Pollutants on Western Trees. In: The Response of Western Forests to Air Pollution. Ecological Studies (Analysis and Synthesis) (R.K.Olson,D. Binkley and M. Bohm, Eds.), vol 97. Springer, New York, NY, pp 183-234. DOI: https://doi.org/10.1007/978-1-4612-2960-5_6

Chakre O.J. (2006). Choice of eco-friendly trees in urban environment to mitigate airborne particulate pollution. Journal of Human Ecology, 20(2): 135-138. DOI: https://doi.org/10.1080/09709274.2006.11905917

Chaudhary I.J. and Rathore D. (2018). Suspended particulate matter deposition and its impact on urban trees. Atmospheric Pollution Research, 9(6): 1072-1082. DOI: https://doi.org/10.1016/j.apr.2018.04.006

Das T.M., Bhaumik A, and Chakravarty A. (1981). Trees as dust filters. Science Today, 15(12): 19-21.

Davis D.D. and Gerhold H.D. (1976). Selection of trees for tolerance of air pollutants. Better trees for metropolitan landscapes. In:United States Department of Agriculture General Technical Report NE-22 (FS.Santamour Jr., H.D. Gerhold and S. Little, Eds.). Northeastern Forest Experiment Station, Upper Darby, PA, pp.61-66.

Dubey R., Bharadwaj S., Zafar M.I. and Biswas S. (2021). Collaborative Air Quality Mapping of Different Metropolitan Cities of India. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43: B4-2021. DOI: https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-87-2021

Farooq M., Saxena R.P. and Beg M.U. (1988). Sulfur dioxide resistance of Indian trees. Water, Air, Soil Pollut., 40:307-316. DOI: https://doi.org/10.1007/BF00163735

Grantz D.A., Garner J.H.B. and Johnson D.W. (2003). Ecological effects of particulate matter. Environment international, 29(2-3): 213-239. DOI: https://doi.org/10.1016/S0160-4120(02)00181-2

Hain F.P. (1987). Interactions of insects, trees and air pollutants. Tree Physiology, 3(1): 93-102. DOI: https://doi.org/10.1093/treephys/3.1.93

Joshi G. (1998). Ambient air quality at road side of an urban area with special reference to respirable dust and total suspended particulate matter. Pollut Res., 17(1): 79-81.

Joshi PC. and Swami A. (2007). Physiological responses of some tree species under roadside automobile pollution stress around city of Haridwar, India. Environmentalist, 27:365-374. DOI: https://doi.org/10.1007/s10669-007-9049-0

Joshi P.C. and Swami A. (2009). Air pollution induced changes in the photosynthetic pigments of selected plant species. Journal of Environmental Biology, 30(2): 295-298.

Jyothi S.J. and Jaya D.S. (2010). Evaluation of air pollution tolerance index of selected plant species along roadsides in Thiruvananthapuram, Kerala. Journal of Environmental Biology, 31 (3): 379-386.

Keller T. and Schwager H. (1977). Air pollution and ascorbic acid. European Journal of Forest Pathology, 7(6): 338-350. DOI: https://doi.org/10.1111/j.1439-0329.1977.tb00603.x

Khan A.M., Pandey V., Yunus M. and Ahmad K.J. (1989). Plants as dust scavengers. A case study. The Indian Forester, 115(9): 670-672.

Leghari S.K., Zaid M.A., Sarangzai A.M., Faheem M., Shawani G.R. and AN W. (2014). Effect of road side dust pollution on the growth and total chlorophyll contents in Vitis vinifera L. (grape). African Journal of Biotechnology, 13(11): 1237-1242. https://doi.org/10.5897/AJB12.2652. DOI: https://doi.org/10.5897/AJB12.2652

Li Y, He N., Hou J., Xu L., Liu C., Zhang J., Wang Q., Zhang X. and Wu X. (2018). Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution, 6:64. https://doi.org/10.3389/fevo.2018.0G064 DOI: https://doi.org/10.3389/fevo.2018.00064

Liu YJ. and Ding H.U.I. (2008). Variation in air pollution tolerance Index of plants near a steel factory: Implication for landscape-plant species selection for industrial areas. WSEAS Transactions on Environment and Development, 4(1): 24-32.

Lodovici M. and Bigagli E. (2011). Oxidative stress and air pollution exposure. Journal of Toxicology, 2011:487074. https://doi.org/l0.1155/2011/487074. DOI: https://doi.org/10.1155/2011/487074

MolnarV.E., Simon E., Tothnneresz B., Ninsawat S. and Szabo S. (2020). Air pollution induced vegetation stress - the Air Pollution Tolerance Index as a quick tool for city health evaluation. Ecological Indicators, 113:106234. DOI: https://doi.org/10.1016/j.ecolind.2020.106234

Mondal D., Gupta S. and Datta J.K. (2011). Anticipated performance index of some tree species considered for green belt development in an urban area. International Research Journal of Plant Science, 2(4): 99-106.

Muenchen R.A. (2020). BlueSky Statistics 7.1 Intro Guide. Accessed from, https://www.blueskystatistics.eom/v/vspfiles/downloadables/BlueSky_Statistics_7.1_lntro_Guide.pdf, on 01 May 2021.

Nivane S.Y., Chaudhari P.R., Gajghate D.G. and Tarar J.L. (2001). Foliar biochemical features of plants as indicators of air pollution. Bull. Environ. Contam. Toxicol., 67:133-140. DOI: https://doi.org/10.1007/s001280101

Pandey A.K., Pandey M., Mishra A., Tiwary S.M. and Tripathi B.D. (2015). Air pollution tolerance index and anticipated performance index of some plant species for development of urban forest. Urban Forestry and Urban Greening, 14(4): 866­871. DOI: https://doi.org/10.1016/j.ufug.2015.08.001

Panda L.L., Aggarwal R.K. and Bhardwaj D.R. (2018). A review on air pollution tolerance index (APTI) and anticipated performance index (API). Current World Environment, 13(1): 55-65. DOI: https://doi.org/10.12944/CWE.13.1.06

Pandey J. and Agrawal M., (1994). Growth responses of tomato plants to low concentrations of sulphur dioxide and nitrogen dioxide. Scientia Horticulturae, 58(1-2): 67-76. DOI: https://doi.org/10.1016/0304-4238(94)90128-7

Patel, D. and Kumar J.N. (2018). An Evaluation of Air Pollution Tolerance Index and Anticipated Performance Index of Some Tree Species Considered for Green Belt Development: A Case Study of Nandesari Industrial Area, Vadodara, and Gujarat, India. Open Journal of Air Pollution, 7:1-13. DOI: https://doi.org/10.4236/ojap.2018.71001

Pavlovic D., Nikolic B., Durovic S., Waisi H., Andelkovic A. and Marisavljevic D. (2019). Chlorophyll as a measure of plant health: agroecological aspects. Pesticides and Phytomedicine, 29:21-34. DOI: https://doi.org/10.2298/PIF1401021P

Rai P.K. (2016). Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicoiogy and Environmental Safety, 129:120-136. DOI: https://doi.org/10.1016/j.ecoenv.2016.03.012

Rai PK., Panda L.L., Chutia B.M. and Singh M.M. (2013). Comparative assessment of air pollution tolerance index (APTI) in the industrial (Rourkela) and non industrial area (Aizawl) of India: An ecomanagement approach. African Journal of Environmental Science and Technology, 7(10): 944-948.

Randhi U.D. and Reddy M.A. (2013). Air Pollution Tolerance Levels of selected urban plant species in industrial areas of Hyderabad (AP), India. Environment, 2(6): 294-295.

Rao D.N. and LeBlanc F. (1966). Effects of sulfur dioxide on the lichen alga, with special reference to chlorophyll. Bryologlst, 69(1): 69-75. DOI: https://doi.org/10.1639/0007-2745(1966)69[69:EOSDOT]2.0.CO;2

Sahu C., Basti S. and Sahu S.K. (2020). Air pollution tolerance index (APTI) and expected performance index (EPI) of trees in Sambalpur town of India. SN Applied Sciences, 2: 1-14. DOI: https://doi.org/10.1007/s42452-020-3120-6

Sahu C.and Sahu S.K. (2015). Air pollution tolerance index (APTI), anticipated performance index (API), carbon sequestration and dust collection potential of Indian tree species-A review. Int J. Emerg. Res. Manag. Technol., 4(11): 37-40.

Saran M., Michel C. and Bors W. (1988). Reactivities of free radicals. In: Air pollution and plant metabolism (S. Schulte-Hostede,N.M. Dan-all, L.W. Blank and A.R. Wellbum (Eds). Elsevier, London, pp 76-93.

Sauter J.J., Kammerbauer H, Panber L and Hock B. (1987). Evidence for the accelerated micro morphological degradation of Epistomatal wax in Nonway spruce by motor vehicle emission. European J. Forest. Pathol., 17:444-448 DOI: https://doi.org/10.1111/j.1439-0329.1987.tb01122.x

Sauter J.J. and VoB J.U. (1986). SEM-observations on the structural degradation of epistomatal waxes in Picea abies (L.) Karst. - and its possible role in the “Fichtensterbenâ€. European J. Forest. Pathol., 16:408-423. DOI: https://doi.org/10.1111/j.1439-0329.1986.tb00209.x

Singh B.P., Singh D. Kumar K. and Jain V.K. (2021). Study of seasonal variation of PM2.5 concentration associated with meteorological parameters at residential sites in Delhi, India. Joumal of Atmospheric Chemistry, 78:161-176. https://doi.org/10.1007/s10874-021-09419-8. DOI: https://doi.org/10.1007/s10874-021-09419-8

Singh H. Yadav M. Kumar N. Kumar A. and Kumar M. (2020). Assessing adaptation and mitigation potential of roadside trees under the influence of vehicular emissions: A case study of Grevillea robusta and Mangifera indica planted in an urban city of India. Plosone, 15(1):e0227380. DOI: https://doi.org/10.1371/journal.pone.0227380

Singh N., Yunus M., Srivastava K., Singh S.N., Pandey V., Mishra J. and Ahmad K.J. (1995). Monitoring of auto exhaust pollution by road side plants. Environ Monitor Assess (USA) 34: 13-25. DOI: https://doi.org/10.1007/BF00546243

Singh S.K. and Rao D.N. (1983). Evaluation of plants for their tolerance to air pollution. In Proceedings of the Symposium on Air Pollution Control, November, pp. 218-224.

Singh S.K., Rao D.N., Agrawal M., Pandey J. and Naryan D. (1991). Air pollution tolerance index of plants. Joumal of Environmental Management, 32(1): 45-55. DOI: https://doi.org/10.1016/S0301-4797(05)80080-5

Singh S.N. and Verma A. (2007). Phytoremediation of air pollutants: a review. In Environmental bioremediation technologies,(S.N. Singh and R.D. Tripathi Eds.), Springer Science and Business Media, Heidelberg, pp.293-314. DOI: https://doi.org/10.1007/978-3-540-34793-4_13

Sinha S., Tripathi A. and Verma N. (2017). Air Pollution Tolerance Index of Selected Tree Species of Doon Valley of Uttarakhand (India). Indian Forester, 143(2): 149-56.

Tak A.A. and Kakde U.B. (2017). Assessment of air pollution tolerance index of plants: a comparative study. International Journal of Pharmacy and Pharmaceutical Sciences, 9(7): 83­89. DOI: https://doi.org/10.22159/ijpps.2017v9i7.18447

The New Indian Express. (2021). Lockdown impact: Telangana sees drop in air pollution levels. The New Indian Express, Telangana, 18 May 2021. Retrieved from https://www.newindianexpress.com/states/telangana/2021/may/18/lockdown-impact-telangana-sees-drop-in-air-pollution-levels-2303938.html, Accessed on 27/05/2021.

Varshney C.K. (1985). Effects of sulphurdioxide on plants Final Technical Report, DoEn, Ministry of Environment and Forest, Govt, of India.

Varshney C.K. and Mitra I. (1993). Importance of hedges in improving urban air quality. Landscape and Urban Planning, 25:75-83. DOI: https://doi.org/10.1016/0169-2046(93)90124-V

Verma A. (2003). Attenuation of automobile generated air pollution by higher plants. Ph.D. Thesis, University of Lucknow, Lucknow, India.

Woo S.Y. and Je S.M. (2006). Photosynthetic rates and antioxidant enzyme activity of Platanus occidentalis growing under two levels of air pollution along the streets of Seoul. Journal of Plant Biology, 49:315-319. DOI: https://doi.org/10.1007/BF03031162

Yu S.W., Li L. and Shimazaki K.I. (1988). Response of spinach and kidney bean plants to nitrogen dioxide. Environmental Pollution, 55(1): 1-13. DOI: https://doi.org/10.1016/0269-7491(88)90155-8

Downloads

Download data is not yet available.

Published

2024-12-01

How to Cite

Patel, B., Kumar, M. B., & Singh, P. (2024). Pollution Tolerance of Selected Tree Species in Urban Landscapes of Hyderabad, Telangana. Indian Forester, 150(12), 1169–1181. https://doi.org/10.36808/if/2024/v150i12/169428

Most read articles by the same author(s)

Loading...