Recent Advances in Understanding the Role of Growth Regulators in Plant Growth and Development in Vitro-I. Conventional Growth Regulators

Recent Advances in Understanding the Role of Growth Regulators in Plant Growth and Development in Vitro-I. Conventional Growth Regulators

Authors

  •   Suresh Kumar   Division of Biochemistry, Indian Agricultural Research Institute, Delhi - 110012
  •   Rohtas Singh   School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana
  •   Sanjay Kalia   Department of Biotechnology, CGO Complex, Lodhi Road, New Delhi – 110053
  •   S. K. Sharma   Indian Council of Forestry Research and Education, Dehradun
  •   Andrajwant K. Kalia   Central Arid Zone Research Institute, Jodhpur – 342003

DOI:

https://doi.org/10.36808/if/2016/v142i5/95052

Keywords:

Abscisic Acid, Auxin, Cytokinin, Ethylene, Gibberellins, Plant Growth Regulators.

Abstract

Growth regulators, a diverse array of organic compounds, are critical components in determining developmental pathways in plants. They interact at the cellular level to produce physiological and morphological effects. Our understanding about transport, metabolism and mode of action of growth regulators in plants has considerably increased in the recent years. Discovery of the chemicals that interfere with synthesis, transport and action of endogenous growth regulators have further improved our knowledge regarding the role of plant growth regulators (PGRs) in plant's growth and development. A number of PGRs are being used in plant cell, tissue and organ cultures for decades, while many of them have recently been discovered and tested for their effects in vitro. In this review, we attempted to summarize the remarkable progress that has been made over the past decades towards understanding PGRs. The progress is further improving our knowledge of the molecular mechanisms of their action, and beginning to explain how PGRs not only have direct influence on cellular growth, but also control various aspects of plant's growth in vivo as well as in vitro.

References

Abeles F.B., Morgan O.W. and Sahveit M.E. (1992). Ethylene in plant biology, 2nd ed. Academic Press, San Diego

Adams D.O. and Yang S.F. (1979). Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA, 76:170–174

Ammirato P.V. (1988). Role of ABA in regulation of somatic embryogenesis. Hort Sci., 23:520

Arnold S.V., Sabala I., Bozhkov P., Dyachok J. and Filonova L. (2002). Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org Cult., 69:233-249

Bandurski R.S., Cohen J.D. and Slovin J. (1995). Auxin biosynthesis and metabolism. In: Plant hormones (Davies PJ ed). Dordrecht: Kluwer Academic Publishers, pp 39-65

Bartrina I., Otto E., Strnad M., Werner T. and Schmülling T. (2011). Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. The Plant Cell : 10.1105/tpc.110.079079.

Beale M.H. and Sponsel V.M. (1993). Future directions in plant hormone research. J Plant Growth Regul., 12:227-235

Biddington N.L. (1992). The influence of ethylene in plant tissue culture. Plant Growth Regul., 11:173-187

Blumenfeld A. and Gazit S. (1970). Interaction of kinetin and abscisic acid in the growth of soybean callus. Plant Physiol., 45:535-536

Brian P.W. and Hemming H.G. (1958). Complementary action of gibberellic acid and auxins in pea internode extension. Ann Bot., 22:1–17

Capuana M. and Debergh P.C. (1997). Improvement of the maturation and germination of horse chestnut somatic embryos. Plant Cell Tiss Org Cult 48:23-29

Carimi F., Zottini M., Formentin E., Terzi M. and Lo Schiavo F. (2003). Cytokinins: new apoptotic inducers in plants. Planta., 216:413–421

Catterou M., Dubois F., Smets R., Vaniet S. and Kichey T. (2002). hoc: an Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity. Plant J., 30:273-287

Chen J.G. and Zhou X. (1998). Involvement of abscisic acid in mesocotyl growth in etiolated seedlings of a Foxtail millet dwarf mutant. J Plant Growth Regul., 17:147–151

Christians M.J., Gingerich D.J., Hansen M., Binder B.M. and Kieber J.J. (2009) The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J., 57:332–345

Chung Y., Maharjan P.M., Lee O., Fujioka S. and Jang S. (2011) Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J., 66:564–578

Davies P.J. (1995) Plant Hormones: Physiology, Biochemistry and Molecular Biology. Kluwer Academic Publishers, Dordrecht, The Netherlands, Norwell, MA, USA

Davies P.J. (2010) The plant hormones: their nature, occurrence, and functions. In: Davis PJ (ed), The Plant Hormones: Biosynthesis, Signal Transduction, Action. Springer, USA.

Dunstan D.I., Bekkaoui F., Pilon M., Fowke L.C. and Abrams S.R. (1988) Effects of abscisic acid and analogues on the maturation of white spruce (Picea glauca) somatic embryos. Plant Sci., 58:77-84

Fan J., Hill L., Crooks C., Doerner P. and Lamb C. (2009) Abscisic acid has a key role in modulating diverse plant–pathogen interactions. Plant Physiol., 150:1750–1761

Fernando S.C. and Gamage C.K.A. (2000) Abscisic acid induced somatic embryogenesis immature embryo explant of coconut (Cocos nucifera L.). Plant Sci., 151:193-198

Finkelstein R., Reeves W., Ariizumi T. and Steber C. (2008) Molecular aspects of seed dormancy. Ann Rev Plant Biol., 59:387–415

Fleet C.M. and Sun T.P. (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol., 8:77-85

Fleishon S., Shani E., Ori N. and Weiss D. (2011) Negative reciprocal interactions between gibberellin and cytokinin in tomato. New Phytol. DOI: 10.1111/j.1469-8137.2010.03616.x

Friml J. (2003) Auxin transport - shaping the plant. Curr. Opin. Plant Boil., 6:7-12

Friml J., Wisniewska J., Benkova E., Mendgen K. and Palme K. (2002) Lateral relocation of auxin efflux regulator AtPIN3 mediates tropism in Arabidopsis. Nature, 415:806–809

Frugier F., Kosuta S., Murray J.D., Crespi M. and Szczyglowski K. (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci., 13:115–120

Fry S.C. and Street H.E. (1980) Gibberellin-sensitive cultures. Plant Physiol., 65:2- 477

Fu X. and Harberd N.P. (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature., 421:740–743

Gaspar T. (1995) Selenieted forms of indolylacetic acid: new powerful synthetic auxins. Across Org Acta 1:65-66

Gaspar T., Kevers C. and Hausman J. (1994) Peroxidase activity and endogenous free auxin during adventitious root formation. In: Lumsdenm PJ, Nicholas JR, Davies WJ (ed), Physiology, growth and development of plants in culture. Dordrecht: Kluwer Academic Publishers, pp 289-298

Gaspar T., Kevers C., Penel C., Greppin H., Reid D.M. and Thorpe T. (1996) Plant hormones and plant growth regulators in plant tissue culture. In vitro Cell Dev Biol-Plant, 32:272-289

Gaspar T., Kevers C. and Bouillenne H. (1989) Ethylene production in relation to rose micropropagation. In: Clysters H, De Proft M, Marcelle R (eds), Biochemical and physiological aspects of ethylene production in lower and higher plants. Dordrecht: Kluwer Academic Publishers, pp 303-312

George E.F., Hall M.A. and Klerk G.J.D. (2008) Plant Propagation by Tissue Culture, 3 rd Edition pp 205-226

Gross D. and Parthier B. (1994) Novel natural substances acting in plant growth regulation. J Plant Growth Regul., 13:93-114

Hagen S.R., Muneta P. and Augustin J. (1991) Stability and utilization of picloram, vitamins and sucrose in a tissue culture medium. Plant Cell Tiss Org Cult., 25:45-48

Hare P.D. and van Staden J. (1994) Inhibitory effect of thidiazuron on the activity of cytokinin oxidase isolated from soybean callus. Plant Cell Physiol., 35:1121-1125

Hirayama T. and Shinozaki K. (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci., 12:343–351

Hooker T.S. and Thorpe T.A. (1998) Effects of fluridone and abscisic acid on lateral root initiation and root elongation of excised tomato roots cultured in vitro. Plant Cell Tiss Org Cult., 52:199–203.

Jimenez V.M. and Bangerth F. (2001) Endogenous hormone levels in explants and in embryogenic and non- embryogenic culture of carrot. Physiol Plant., 111:389-395

Kalia R.K., Arya S., Kalia S. and Arya I.D. (2007). Plantlet regeneration from fascicular buds on seedling explants of Pinus roxburghii. Biol. Plant, 51:653-659

Kalia S., Kalia R.K. and Sharma S.K. (2004) Evaluation of clonal variability in shoot coppicing ability and in vitro responses of Dalbergia sissoo Roxb. Silvae Genet., 53:212-220

Kendrew J. (1994) The encyclopedia of molecular biology. Blackwell Science, Oxford, UK

Kendrick M.D. and Chang C. (2008) Ethylene signaling: new levels of complexity and regulation. Curr. Opin. Plant Biol., 11:479–485

Klee H.J., Hayford M.B., Kretzmer K.A., Barry G.F. and Kishore G.M. (1991). Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell, 3:1187–1193

Kochhar T.S. (1980). Effect of abscisic acid and auxins on the growth of tobacco callus. Z Pflanzenphysiol, 97:1-4

Kogl F. and Haagen-Smit A.J. (1931). Uber die Chemie des Wuchsstoffs K. Akad. Wetenschap. Amsterdam. Proc. Sect. Sci., 34:1411-1416

Krikorian A.D. (1995). Hormones in tissue culture and microprupagation. In: Plant hormones(Davies PJ ed.). Dordrecht: Kluwer Academic Publishers, pp 774-796

Kumar P.P., Lakshmanan P. and Thorpe T.A. (1998). Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell Dev BiolPlant, 34:94 - 103

Kumar S. and Bhat V. (2012). High frequency direct plant regeneration via multiple shoot induction in the apomictic forage grass Cenchrus ciliaris L. In Vitro Cell Dev Biol-Plant, 41: (In Press)

Kumar S. and Chandra A. (2009). Direct plant regeneration via multiple shoot induction in Stylosanthes seabrana. Cytologia, 74:391-399

Kumar S., Chandra A. and Gupta M.G. (2008). Plantlet regeneration via multiple shoot induction in Indian accessions of lucerne (Medicago sativa L.). J Plant Biochem Biotech., 17:181-184

Label P. and Lelu M.A. (1994). Influence of exogenous abscisic acid on germination and plantlet conversion frequencies of hybrid larch somatic embryos (Larix leptoeuropaea). Plant Growth Regul., 15:175-182

Lance B., Reid D.M. and Thorpe T.A. (1976). Endogenous gibberellins and growth of tobacco callus cultures. Physiol. Plant, 36:287-292

Leyser O. (2009). The control of shoot branching: an example of plant information processing. Plant Cell Environ., 32:694-703

Malik S.K., Chaudhury R. and Kalia R.K. (2005). In vitro multiplication and conservation of Garcinia indica: A medicinal tropical tree. Sci. Hort., 106:539-553

Matsumoto-Kitano M., Kusumoto T., Tarkowski P., Kinoshita-Tsujimura K., Vaclavıkova K., Miyawaki K. and Kakimoto T. (2008). Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci USA 105:20027–20031

McCourt P. and Creelman R. (2008). The ABA receptors–we report you decide. Curr Opin Plant Biol., 11:474–478

Miller C., Skoog F., Von Saltza M.H. and Strong F.M. (1955). Kinetin, a cell division factor from deoxyribonucleic acid. J. Am Chem. Soc., 77:1392

Miyawaki K., Matsumoto-Kitano M. and Kakimoto T. (2004). Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: Tissue speci?city and regulation by auxin, cytokinin, and nitrate. Plant J., 37:128–138

Murray J.D., Karas B.J., Sato S., Tabata S., Amyot L. and Szczyglowski K. (2007). A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science, 315:101–104

Nambara E. and Marion-Poll A. (2005). Abscisic acid biosynthesis and catabolism. Ann. Rev. Plant Biol., 56:165–185

Nicotra A.B., Atkin O.K., Bonser S.P., Davidson A.M. and Finnegan E.J. (2010). Plant phenotypic plasticity in a changing climate. Trends Plant Sci., 15:684-692

Oeller P.W., Min-Wong L., Taylor L.P., Pike D.A. and Theologis A. (1991). Reversible inhibition of tomato fruit senescence by antisense RNA. Science, 254:437-439

Parthier B. (2004). Phytohormones and chloroplast development. Biochem Physiol Pflanz, 174:173-214.

Peng J., Richards D.E., Hartley N.M., Murphy G.P., Devos K.M., Flintham J.E., Beales J., Fish L.J., Worland A.J. and Pelica F. (1999).'Green Revolution' genes encode mutant gibberellins response modulators. Nature, 400:256–261

Peng Z.Y., Zhou X., Li L., Yu X. and Li H. (2009). Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis. Nucleic Acids Res., 37:D975–D982

Picton S., Barton S.L., Bouzayen M., Hamilton A.J. and Grierson D. (1993). Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J., 13:469-481

Pua E.C. and Chi G.L. (1993). De novo shoot morphogenesis and plant growth of mustard (Brassica juncea) in vitro in relation to ethylene. Physiol Plant., 88:467-474

Pua E.C. and Lee J.E.E. (1995). Enhanced de novo shoot morphogenesis in vitro by expression of antisense 1-aminocyclopropane-1-carboxylate oxidase gene in transgenic mustard plants. Planta, 196:69-76

Radojevic L. (1988). Plant regeneration of Aesculus hippocastanum L. (Horse chestnut) through somatic embryogenesis. J. Plant Physiol., 132:322-326

Rai M.K., Jaiswal V.S. and Jaiswal U. (2008). Effect of ABA and sucrose on germination of encapsulated somatic embryos of guava (Psidium guajava L.). Sci. Hort., 117:302-305

Rai M.K., Shekhawat N.S., Gupta H.A.K., Phulwaria M. and Ram K. (2011). The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tiss. Org. Cult., 111(2): 179-190

Rashotte A.M., Carson S.D., To J.P. and Kieber J.J. (2003). Expression profiling of cytokinin action in Arabidopsis. Plant Physiol., 132:1998–2011

Roberts D.R., Flinn B.S. and Webb D.T. (1990). Abscisic acid and indole-3- butyric acid regulation of maturation and accumulation of storage proteins in somatic embryos of interior spruce. Physiol. Plant, 78:355-360

Robertson A.J., Weninger A., Wilen R.W., Fu P. and Gusta L.V. (1994). Comparison of dehydrin gene expression and freezing tolerance in Bromus inermis and Secale cereale grown in controlled environments, hydroponics, and the field. Plant Physiol., 106:1213-1216

Downloads

Download data is not yet available.

Published

2016-05-01

How to Cite

Kumar, S., Singh, R., Kalia, S., Sharma, S. K., & Kalia, A. K. (2016). Recent Advances in Understanding the Role of Growth Regulators in Plant Growth and Development <I>in Vitro</I>-I. Conventional Growth Regulators. Indian Forester, 142(5), 459–470. https://doi.org/10.36808/if/2016/v142i5/95052

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 5 6 > >> 
Loading...