Climate Crisis on Prospective Distribution of Shorea robusta (Gaertn.) in Tropical Deciduous Forests of Eastern Ghats of India

Climate Crisis on Prospective Distribution of Shorea robusta (Gaertn.) in Tropical Deciduous Forests of Eastern Ghats of India

Authors

  •   Prakash Paraseth   Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, NAD, Sunabeda, Koraput 763004
  •   Rakesh Paul   Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, NAD, Sunabeda, Koraput 763004
  •   Kakoli Banerjee   Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, NAD, Sunabeda, Koraput 763004

DOI:

https://doi.org/10.36808/if/2023/v149i11/169433

Keywords:

Climate Change, Eastern Ghats, Environmental Parameters, MaxEnt, Representative Concentration Pathways, Shorea robusta Gaertn.

Abstract

Sal (Shorea robusta Gaertn.) being a dominant species in the Eastern Ghats of India plays a vital role in regulating climate change by upholding a huge quantum of CO2. Our study has highlighted the present extent of habitat 2 suitability of S. robusta and its future loss using MaxEnt model in three climatic years 2050, 2070 and 2080 under two representative concentration pathways (RCP 4.5 and RCP 8.5) in Koraput district of Odisha. Out of 23 environmental parameters, Slope, Minimum temperature of the coldest month and Precipitation of the coldest quarter contributed the most towards the modeling process. In the present study, the unsuitability area increased by 306.6812 km2 and 479.7541 km2 in case of RCP 4.5 and RCP 8.5 respectively till the year 2100. The area under high suitability will see a decrease of 632.953 km2 in RCP 4.5 and 726.528 km2 in RCP 8.5 and shows a drastic transition towards medium and low suitability area which showed RCP 8.5 impacted more as compared to RCP 4.5. The present model was found to be satisfactory with the area under curve (AUC) value of 0.892. The present study highlighted the deleterious effect of climate change on the habitat loss of S. robusta and locates suitable area for its conservation.

References

Adhikary P.P., Barman D. and Madhu M. (2019). Land use and land cover dynamics with special emphasis on shifting cultivation in Eastern Ghats highlands of India using remote sensing data and GIS. Environ Monit Assess., 191(5): 315.

Areendran G., Rao P., Raj K., Mazumdar S. and Puri K. (2013). Land use/land cover change dynamics analysis in mining areas of Singrauli district in Madhya Pradesh, India. Trop. Ecol., 54(2): 239-250.

Attua E.M. and Pabi O. (2013). Tree species composition, richness and diversity in the northern forestsanannaecotone of Ghana. Journal of Applied Biosciences, 69: 5437-5448. http://dx.doi.org/10.4314/jab.v69i0.95069

Borah N., Nath A.J. and Das K.A. (2013). Aboveground Biomass and Carbon Stocks of Tree Species in Tropical Forests of Cachar District, Assam, Northeast India. International Journal of Ecology and Environmental Sciences, 39(2): 97–106.

Burkhart H.E. and Tome M. (2012). Modeling Forest Trees and Stands, Modeling Forest Trees and Stands. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978- 90-481-3170-9.

Chitale V.S. and Behera M.D. (2012). Can the distribution of sal (S. robusta Gaertn. f.) shift in the north eastern direction in India due to changing climate? Current Science 102: 8.

Cottam G. and Curtis J.T. (1956). The use of distance measures in phytosociological sampling. Ecology, 37(3): 451-460.

Deb J.C., Phinn S., Butt N. and McAlpine C.A. (2017). The impact of climate change on the distribution of two threatened Dipterocarp trees. Ecology and Evolution, 7: 2238e2248. https://doi.org/10.1002/ece3.2846.

Deb J.C., Salman M.H.R., Halim M.A., Chowdhury M.Q. and Roy A. (2014). Characterising the diameter distribution of Sal plantations by comparing normal, lognormal and Weibull distributions at Tilagarh Eco-park, Bangladesh. South. For.a J. For. Sci., 76: 201e208. https://doi.org/10.2989/20702620.2014.947077.

Devi L.S. and Yadava P.S. (2009). Aboveground biomass and net primary production of semi-evergreen tropical forest of Manipur, North-Eastern India. Journal of Forestry Research, 20: 151–155. http://dx.doi.org/10.1007/s11676-009-0026-y.

Elith J., Graham C., Anderson R., Dudik M., Ferrier S., Guisan A., Hijmans R., Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L., Loiselle B., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J.M., Tonwsend A., Phillips S.J., Richardson K.S., Scachetti-Pereira R., Schaprie R., Soberon J., Williams S., Wisz M. and Zimmermann N.E. (2006). “Novel methods improve prediction of species' distributions from occurrence data.†Ecography (Cop.) 29: 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x.

García-Martín A., Pérez-Cabello F., de la Riva J.R. and Montorio R. (2008). Estimation of crown biomass of Pinus spp. from Landsat TM and its effect on burn severity in a Spanish fire scar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1(4): 254–265. https://doi.org/10.1109/JSTARS.2008.2011623.

Gautam K.H. and Devoe N.N. (2006). Ecological and anthropogenic niches of Sal (S. robusta Gaertn.f.) forests and prospects for multiple product forest management-A review. Forestry, 79: 81-101.http://refhub.elsevier.com/S1574-9541(21)00035-2/rf0130.

Gomat H.Y., Deleporte P., Moukini R., Mialounguila G., Ognouabi N., Saya A.R., Vigneron P. and Saint-Andre L. (2011). What factors influence the stem taper of Eucalyptus: growth, environmental conditions, or genetics? Ann. For. Sci., 68: 109–120. https://doi.org/10.1007/s13595-011-0012-3.

Hamid M., Khuroo A.A., Charles B., Ahmad R., Singh C.P. and Aravind N.A. (2018). Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas. Biodivers Conserv., 28: 2345–2370. https://doi.org/10.1007/s10531-018-1641-8.

Hasnat M.M. and Hoque M.S. (2016). Developing satellite towns: a solution to housing problem or creation of new problems. IACSIT International Journal of Engineering and Technology, 8: 50e56. DOI: 10.7763/IJET.2016.V8.857.

IUCN Species Survival Commission (2015). The IUCN red list of threatened species. Available online at: http://www.iucnredlist.org/ [2 Sept. 2017].

Jacobs M., Rais A. and Pretzsch H. (2020). Analysis of stand density effects on the stem form of Norway spruce trees and volume miscalculation by traditional form factor equations using terrestrial laser scanning (TLS).Can. J. For. Res., 50: 51–64. https:// doi.org/10.1139/cjfr-2019-0121.

Laing T. (2015). Rights to the forest, REDD+ and elections: mining in Guyana. Resour. Pol icy 46: 250–261. http://dx.doi.org/10.1016/j.resourpol.2015.10.008.

Long S., Zeng S., Liu F. and Wang G. (2020). Influence of slope, aspect and competition index on the height-diameter relationship of cyclobalanopsisglauca trees for improving prediction of height in mixed forests. Silva Fenn., 54: 20. https://doi.or g/10.14214/sf.10242.

Marandi R.R., Britto S.J. and Soreng P.K. (2016). Phytochemical profiling, antibacterial screening and antioxidant properties of the sacred tree (S. robustagaertn.) of Jharkhand. Int. J. Pharm. Sci. Res., 7 (97): 2874. http://refhub.elsevier.com/S1574-9541(21)00035-2/rf0220.

Mishra S.N., Gupta H.S. and Kulkarni N. (2021). Impact of climate change on the distribution of Sal species. Ecological Informatics, 61: 101244. https://doi.org/10.1016/j.ecoinf.2021.101244.

Neumann M. and Starlinger F. (2001). The significance of different indices for stand structure and diversity in forests. Forest Ecology and Management, 145: 91-106. http://dx.doi.org/10.1016/S0378-1127(00)00577-6.

Pacifici M., Foden W.B., Visconti P., Watson J.E., Butchart S.H., Kovacs K.M. and Akçakaya H.R. (2015). Assessing species vulnerability to climate change. Nat. Clim. Change, 5: 215e224. https://doi.org/10.1038/nclimate2448.

Palmer D.J., Höck B.K., Kimberley M.O., Watt M.S., Lowe D.J. and Payn T.W. (2009). Comparison of spatial prediction techniques for developing Pinusradiata productivity surfaces across New Zealand. Forest Ecology and Management, 258(9): 2046–2055. http://dx.doi.org/10.1016/j.foreco.2009.07.057.

Panda R.M., Behera M.D. and Roy P.S. (2017). Assessing distributions of two invasive species of contrasting habits in future climate. J Environ Manag., 213: 478–488. https://doi.org/10.1016/j.jenvman.2017.12. 053.

Parry M.L. (2007). Climate change 2007: impacts, adaptation and vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the IPCC, Cambridge University Press, Cambridge, UK. https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf

Paul R., Subudhi D.K., Sahoo C.K. and Banerjee K. (2021). Invasion of Lantana camara L. and its response to climate change in the mountains of Eastern Ghats. Biologia. https://doi.org/10.1007/s11756-021-00735-8

Peterson A.T., Soberon J., Pearson R.G., Anderson R.P., Martínez-Meyer E., Nakamura M. and Araújo M.B. (2011). Ecological Niches and Geographic Distributions (MPB-49). Princeton University Press ISBN9781400840670.

Phillips E.A. (1959). Methods of vegetation study. Henry Holt and Co.lnc., New York. pp107.

Phillips S., Anderson R. and Schapire R. (2006). Maximum entropy modelling of species geographic distributions. Ecol Model, 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Popradit A., Srisatit T., Kiratiprayoon S., Yoshimura J., Ishida A., Shiyomi M., Murayama T., Chantaranothai P., Outtaranakorn S. and Phromma I. (2015). Anthropogenic effects on a tropical forest according to the distance from human settlements. Sci. Rep., 5: 14689. https://doi.org/10.1038/srep14689. www.nature.com/scientificreports/

Powers J.S., Montgomery R.A., Adair E.C., Brearley F.Q. and DeWalt S.J. (2009). Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J. Ecol., 97: 801e811. https://doi.org/10.1111/j.1365-2745.2009. 01515.x.

Propastin P. (2012). Modifying geographically weighted regression for estimating aboveground biomass in tropical rainforests by multispectral remote sensing data. Int. J. Appl. Earth Obs., 18: 82–90. http://dx.doi.org/10.1016/j.jag.2011.12.013

Rajashekar G., Fararoda R., Reddy R.S., Jha C.S., Ganeshaiah K.N., Singh J.S. and Dadhwal V.K. (2018). Spatial distribution of forest biomass carbon (Above and below ground) in Indian forests. Ecological Indicators, 85: 742-752. http://dx.doi.org/10.1016/j.ecolind.2017.11.024

Saarinen N., Kankare V., Yrttimaa T., Viljanen N., Honkavaara E., Holopainen M., Hyypp¨ a J., Huuskonen S., Hynynen J. and Vastaranta M. (2020). Assessing the effects of thinning on stem growth allocation of individual Scots pine trees. For. Ecol. Manage., 474. https://doi.org/10.1016/j.foreco.2020.118344.

Schneider R. (2018). Understanding the Factors Influencing Stem Form with Modelling Tools. Progress in Botany 295–316. https://doi.org/10.1007/124_2018_21

Shishir S., Mollah T.H., Tsuyuzaki S. and Wada N. (2020). Predicting the probable impact of climate change on the distribution of threatened S. robusta forest in Purbachal, Bangladesh. Global Ecology and Conservation, 24: e01250. https://doi.org/10.1016/j.gecco.2020.e01250.

Singh V., Dwivedi V., Singh S. and Pandey A. (2014). Potential of Sal (S. robusta Gaertn. f.) Seeds for enterprise development in Central India: An overview Potential of Sal (S. robusta Gaertn. f.) Seeds for enterprise development in Central India: An overview. eJournal Appl. For. Ecol., 2: 34–39.

Tanaka T., Sato T., Watanabe K., Wang Y., Yang D., Inoue H., Li K. and Inamura T. (2013). Irrigation 637 system and land use effect on surface water quality in river, at lake Dianchi, Yunnan, China. J. 638 Environ. Sci., 25(6): 1107–1116. https://doi.org/10.1016/s1001-0742(12)60206-x

Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus B.F., de Siqueira M.F., Grainger A., Hannah L., Hughes L., Huntley B., van Jaarsveld A.S., Midgley G.F., Miles L., Ortega-Huerta M.A., Townsend Peterson A., Phillips O.L. and Williams S.E. (2004). Extinction risk from climate change. Nature, 427(6970): 145e148.https://doi.org/10.1038/nature02121.

Tsumura Y., Kado T., Yoshida K., Abe H., Ohtani M., Taguchi Y. and Lee S.L. (2011). Molecular database for classifying Shorea species (Dipterocarpaceae) and techniques for checking the legitimacy of timber and wood products. J. Plant Res., 124: 35e48. https://doi.org/10.1007/s10265-010-0348-z.

Wiens J.A., Stralberg D., Jongsomjit D., Howell C.A. and Snyder M.A. (2009). Niches, models, and climate change: assessing the assumptions and uncertainties, 106. Proceedings of the National Academy of Sciences, USA, 19729e19736. https://doi.org/10.1073/pnas.0901639106.

Downloads

Download data is not yet available.

Published

2023-11-01

How to Cite

Paraseth, P., Paul, R., & Banerjee, K. (2023). Climate Crisis on Prospective Distribution of <i>Shorea robusta</i> (Gaertn.) in Tropical Deciduous Forests of Eastern Ghats of India. Indian Forester, 149(11), 1122–1132. https://doi.org/10.36808/if/2023/v149i11/169433
Loading...