Generation of Division Level Fire Maps Using Satellite-derived Fire Data

Generation of Division Level Fire Maps Using Satellite-derived Fire Data

Authors

  •   Ankur Awadhiya   Madhya Pradesh Forest Department, Betul Circle, Madhya Pradesh

DOI:

https://doi.org/10.36808/if/2018/v144i4/129308

Keywords:

Forest fire, Fire map, Fire monitoring, Planning, Management.

Abstract

Effective control over forest fires demands that the scarce men and material resources to detect and douse these fires are utilised in the most optimal and efficient manner. Creation of division-level fire maps is an extremely crucial exercise in this cause, since they facilitate the analysis of the efficacy of the current deployment of fire-fighting resources, and also guide the redeployment of these resources to those regions that need them the most. In this paper, we describe the creation of division-level fire maps by utilising satellite-derived fire data from the NASA FIRMS (Fire Information for Resource Management System) database, together with the GPS coordinates of the fire-fighting resource bases. The process utilising freely available data is simple and scalable, and can be extended to any other region with ease. It permits the prompt recognition of fire hot-spot regions and an analysis of the fire-fighting resource bases, so vital for supervisory and management purposes.

References

Almendros G., González-Vila F.J. and Martin F. (1990). Fireinduced transformation of soil organic matter from an oak forest: an experimental approach to the effects of fire on humic substances. Soil Science, 149(3): 158-168.

Almendros G., González-Vila F.J., Martin F., Fründ R. and Lüdemann H.-D. (1992). Solid state NMR studies of fire-induced changes in the structure of humic substances. Science of the Total Environment, 117: 63-74.

Almendros G., Martin F. and González-Vila F.J. (1988). Effects of fire on humic and lipid fractions in a Dystric Xerochrept in Spain. Geoderma, 42(2): 115-127.

Armstrong G.W. (2004). Sustainability of timber supply considering the risk of wildfire. Forest Science, 50(5): 626-639. Awadhiya A. (In press). Fire breakers: Novel devices for the control of forest surface fires.

Bååth E., Frostegård Å., Pennanen T. and Fritze H. (1995). Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biology and Biochemistry, 27(2): 229240.

Bahuguna V. (1999). Forest fire prevention and control strategies in India. International Forest Fire News,20: 5-9.

Berar G.o.C.P.a. (1932). The Central Provinces & Berar Forest Manual. Fifth Edition.

Bissett J. and Parkinson D. (1980). Long-term effects of fire on the composition and activity of the soil microflora of a subalpine, coniferous forest. Canadian Journal of Botany,58(15): 1704-1721.

Boerner R. and Brinkman J.A. (2003). Fire frequency and soil enzyme activity in southern Ohio oak–hickory forests. Applied Soil Ecology, 23(2): 137-146.

Campbell R.E., Baker J.M., Ffolliott P., Larson F. and Avery C. (1977). Wildfire effects on a ponderosa pine ecosystem: an Arizona case study.

Casbeer D.W., Kingston D.B., Beard R.W. and McLain T.W. (2006). Cooperative forest fire surveillance using a team of small unmanned air vehicles. Inter. J. Systems Science, 37(6): 351360.

Certini G. (2005). Effects of fire on properties of forest soils: a review. Oecologia,143(1): 1-10. Champion S. and Seth S. (1968). Forest types in India, Govt, of India Press.

Choromanska U. and DeLuca T. (2002). Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biology and Biochemistry, 34(2): 263-271.

Covington W.W., DeBano L.F. and Huntsberger T.G. (1991). Notes: soil nitrogen changes associated with slash pile burning in pinyon-juniper woodlands. Forest Science, 37(1): 347-355.

Covington W.W. and Sackett S. (1992). Soil mineral nitrogen changes following prescribed burning in ponderosa pine. Forest Ecology and Management, 54(1-4): 175-191.

Davies D.K., Ilavajhala S., Wong M.M. and Justice C.O. (2009). Fire information for resource management system: archiving and distributing MODIS active fire data. IEEE Transactions on Geoscience and Remote Sensing, 47(1): 72-79.

DeBano L.F., Neary D.G. and Ffolliott P.F. (1998). Fire Effects on Ecosystems, Wiley.

Fernández I., Cabaneiro A. and Carballas T. (1999). Carbon mineralization dynamics in soils after wildfires in two Galician forests. Soil Biology and Biochemistry, 31(13): 1853-1865.

Flannigan M.D. and Haar T.V. (1986). Forest fire monitoring using NOAA satellite AVHRR. Canadian J. Forest Research, 16(5): 975-982.

Fonturbel M., Vega J., Bara S. and Bernardez I. (1995). Influence of prescribed burning of pine stands in NW Spain on soil microorganisms. European J. Soil Biology ,31(1): 13-20.

Fritze H., Pennanen T. and Pietikäinen J. (1993). Recovery of soil microbial biomass and activity from prescribed burning. Canadian J. Forest Research, 23(7): 1286-1290.

FSI (2015). India State of Forest Report, Forest Survey of India.

Giglio L., Schroeder W. and Justice C.O. (2016). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment,178: 31-41.

Giovannini G. and Lucchesi S. (1997). Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Science, 162(7): 479-486.

Giovannini G., Lucchesi S. and Giachetti M. (1988). Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility. Soil Science, 146(4): 255-261.

González-Pérez J.A., González-Vila F.J., Almendros G. and Knicker H. (2004). The effect of fire on soil organic matter—a review. Environment International, 30(6): 855-870.

Hefeeda M. and Bagheri M. (2009). Forest Fire Modeling and Early Detection using Wireless Sensor Networks. Ad Hoc & Sensor Wireless Networks, 7(3-4): 169-224.

Inbar M., Tamir M.i. and Wittenberg L. (1998). Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area. Geomorphology, 24(1): 17-33.

Jaiswal R.K., Mukherjee S., Raju K.D. and Saxena R. (2002). Forest fire risk zone mapping from satellite imagery and GIS.

Inter. J. Applied Earth Observation and Geoinformation, 4(1): 1-10.

Justice C.O., Giglio L., Roy D., Boschetti L., Csiszar I., Davies D., Korontzi S., Schroeder W., O'Neal K. and Morisette J. (2010). MODIS-derived global fire products. Land remote sensing and global environmental change, Springer: 661-679.

Kutiel P., Lavee H., Segev M. and Benyamini Y. (1995). The effect of fire-induced surface heterogeneity on rainfall-runoff-erosion relationships in an eastern Mediterranean ecosystem, Israel. Catena, 25(1): 77-87.

Kutiel P. and Shaviv A. (1989). Effect of simulated forest fire on the availability of N and P in Mediterranean soils. Plant and soil, 120(1): 57-63.

Lloret J., Garcia M., Bri D. and Sendra S. (2009). A wireless sensor network deployment for rural and forest fire detection and verification. Sensors, 9(11): 8722-8747.

Martell D.L. (1994). The impact of fire on timber supply in Ontario. The forestry chronicle,70(2): 164-173.

Merino L., Caballero F., Martínez-de-Dios J.R., Maza I. and Ollero A. (2012). An unmanned aircraft system for automatic forest fire monitoring and measurement. J. Intelligent & Robotic Systems, 65(1): 533-548.

Ministry of Environment and Forests G.o.I. (2014). National Working Plan Code - 2014. Deradun, Forest Research Institute.

Nami M., Jaafari A., Fallah M. and Nabiuni S. (2018). Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. Inter. J. Envir. Science and Technology, 15(2): 373-384.

Obrist D., Delucia E.H. and Arnone J.A. (2003). Consequences of wildfire on ecosystem CO2 and water vapour fluxes in the Great Basin. Global change biology, 9(4): 563-574.

Parra J.G., Rivero V.C. and Lopez T.I. (1996). Forms of Mn in soils affected by a forest fire. Science of the Total Environment, 181(3): 231-236.

Schroeder W., Oliva P., Giglio L. and Csiszar I.A. (2014). The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment, 143: 85-96.

Shrivastava A.K. (2006). Working Plan of West Mandla Division.

Son B., Her Y.-s. and Kim J.-G. (2006). A design and implementation of forest-fires surveillance system based on wireless sensor networks for South Korea mountains. Inter. J. Computer Science and Network Security (IJCSNS) ,6(9): 124130.

Ulery A.L. and Graham R. (1993). Forest fire effects on soil color and texture. Soil Science Society of America Journal, 57(1): 135140.

Verma D. (2008). Working Plan of South Balaghat Division.

Wagner C.V. (1983). Simulating the effect of forest fire on longterm annual timber supply. Canadian J. Forest Research, 13(3): 451-457.

Wardle D.A., Hörnberg G., Zackrisson O., Kalela-Brundin M. and Coomes D.A. (2003). Long-term effects of wildfire on ecosystem properties across an island area gradient. Science, 300(5621): 972-975.

Yu L., Wang N. and Meng X. (2005). Real-time forest fire detection with wireless sensor networks. Wireless Communications, Networking and Mobile Computing, 2005. Proceedings. 2005 International Conference on, IEEE.

Zhang J., Li W., Han N. and Kan J. (2008). Forest fire detection system based on a ZigBee wireless sensor network. Frontiers of Forestry in China, 3(3): 369-374.

Zhou G., Li C. and Cheng P. (2005). Unmanned aerial vehicle (UAV) real-time video registration for forest fire monitoring. Geoscience and Remote Sensing Symposium, 2005. IGARSS'05. Proceedings. 2005 IEEE International, IEEE.

Downloads

Download data is not yet available.

Published

2018-05-16

How to Cite

Awadhiya, A. (2018). Generation of Division Level Fire Maps Using Satellite-derived Fire Data. Indian Forester, 144(4), 471–476. https://doi.org/10.36808/if/2018/v144i4/129308

Issue

Section

Articles
Loading...