Ecologically Sensitive Regions in the Western Ghats, a Biodiversity Hotspot

Ecologically Sensitive Regions in the Western Ghats, a Biodiversity Hotspot

Authors

  •   T. V. Ramachandra   Indian Institute of Science, Bangalore, Karnataka, 560 012
  •   Bharath Setturu   Indian Institute of Science, Bangalore, Karnataka, 560 012
  •   S. Vinay   RCG School of Infrastructure Design and Management, Indian Institute of Technology Kharagpur 721302
  •   M. D. Subash Chandran   Indian Institute of Science, Bangalore, Karnataka, 560 012
  •   H. Bharath Aithal   RCG School of Infrastructure Design and Management, Indian Institute of Technology Kharagpur 721302

DOI:

https://doi.org/10.36808/if/2023/v149i11/169382

Keywords:

Biodiversity, Conservation, Cluster-Based Development, Ecological Fragility, Endemic Species, Sustainable Development.

Abstract

Ecological sensitivity or fragility refers to the permanent and irreparable loss of extant life forms or significant damage to the natural processes of evolution and speciation with the alterations in the ecological integrity of a region. The comprehensive knowledge of the ecological fragility of a region is quintessential for evolving strategies for conserving the area, which entails identifying factors responsible for ecological sensitiveness, including landscape dynamics, and visualizing future transitions to mitigate the problems of haphazard and uncontrolled development approaches. Analyses of ecologically sensitive regions in the Western Ghats, one among 36 global biodiversity hotspots using temporal remote sensing data, highlight serious concerns about the status of forests and conservation measures. Ecological sensitive region (ESR) delineation considers abiotic, biotic, and socio/anthropological factors, reflecting the current status of the fragile landscape and their significance in maintaining ecosystem 2 equilibrium. ESR analyses depict 63,148 km2 area under significantly higher ecological fragility, 27,646 km2 under high ecological fragility, 48,490 km2 as moderate, and 20,716 km2 as low ecological fragility. Integrating ESRs in the sustainable development policy framework would aid in regulating unplanned developmental activities, which aid in ensuring ecological security with the continuance of the essential ecosystem services to sustain the livelihood of people.

References

Aldieri L., Carlucci F., Vinci C.P. and Yigitcanlar T. (2019). Environmental innovation, knowledge spillovers and policy implications: A systematic review of the economic effects literature. J. Clean Prod., 239: 118051.

Andronache I., Marin M., Fischer R., Ahammer H., Radulovic M., Ciobotaru A.M., Jelinek H.F., Di Ieva A., Pintilii R.D., Drăghici C.C., Herman G.V., Nicula A.S., Simion A.G., Loghin I.V., Diaconu D.C. and Peptenatu D. (2019). Dynamics of Forest Fragmentation and Connectivity Using Particle and Fractal Analysis. Sci Rep., 9(1): 12228. https://doi.org/10.1038/s41598-019-48277-z.

Banerjee A. and Madhurima C. (2013). Forest degradation and livelihood of local communities in India: A human rights approach. J. Hortic For., 5: 122–129.

Beinat E. (1997). Value functions for environmental management. In: Value Functions for Environmental Management. Springer Netherlands, Dordrecht, pp 77–106.

Bell C.W., Tissue D.T., Loik M.E., Wallenstein M.D., Acosta-Martinez V., Erickson R.A. and Zak J.C. (2014). Soil microbial and nutrient responses to 7 years of seasonally altered precipitation in a Chihuahuan Desert grassland. Glob. Chang Biol., 20(5): 1657-73. https://doi.org/10.1111/gcb.12418.

Bharath S., Rajan K.S. and Ramachandra T.V. (2013). Land Surface Temperature Responses to Land Use Land Cover Dynamics. Geoinfor GeostatAn Overv., 1: 20-24. https://doi.org/10.4172/2327-4581.1000112.

Bharath S., Rajan K.S. and Ramachandra T.V. (2021) Modeling Forest Landscape Dynamics, Environmen. Nova Science Publishers, New York, NY(United States).

Bharath S. and Ramachandra T.V. (2021). Modeling Landscape Dynamics of Policy Interventions in Karnataka State, India. J Geovisualization Spat Anal., 5: 1–23.

Brinck K., Fischer R., Groeneveld J., Lehmann S., Dantas De Paula M., Pütz S., Sexton J.O., Song D. and Huth A. (2017). High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat Commun., 17(8): 14855. https://doi.org/10.1038/ncomms14855.

Champion H.G. and Seth S.K. (1968). A revised survey of the forest types of India. Manager of publications, the University of Michigan, Pp 404.

Chaplin-Kramer R., Ramler I., Sharp R., Haddad N.M., Gerber J.S., West P.C., Mandle L., Engstorm P., Baccini A., Sim S., Mueller C. and King H. (2015). Degradation in carbon stocks near tropical forest edges. Nat Commun., 6: 10158. https://doi.org/10.1038/ncomms10158.

ESMAP (2020). Energy Sector Management Assistance Program Annual Report 2020 (English). Washington, D.C.

Ewers RM. and Banks-Leite C. (2013). Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS One, 8: e58093.

Gadgil M., Daniels R.J.R., Ganeshaiah K.N., Prsad S.N., Murthy M.S.R., Jha C.S., Ramesh B.R. and Subramanian K.A. (2011). Mapping ecologically sensitive, significant and salient areas of Western Ghats: proposed protocols and methodology. Curr Sci., 100(2): 175–182.

Hunter M.O., Keller M. and Morton D. (2015). Structural dynamics of tropical moist forest gaps. PLoS One10:e0132144.

Karthik R., Robin R.S. and Anandavelu I. (2020). Diatom bloom in the Amba River, west coast of India: a nutrient-enriched tropical river-fed estuary. Reg Stud Mar Sci., 35: 101244.

Koschke L., Fürst C., Frank S. and Makeschin F. (2012). A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision to support landscape planning. Ecol Indic., 21: 54–66.

Kuèas A., Trakimas G., Balèiauskas L. and Vaitkus G. (2011). Multi-scale analysis of forest fragmentation in Lithuania. Balt For., 17: 128–135.

Langlois L.A., Drohan P.J. and Brittingham M.C. (2017). Linear infrastructure drives habitat conversion and forest fragmentation associated with Marcellus shale gas development in a forested landscape. J Environ Manage., 197: 167–176.

Latimer C.E. and Zuckerberg B. (2017). Forest fragmentation alters winter microclimates and microrefugia in human-modified landscapes. Ecography (Cop), 40: 158–170.

Leman N., Ramli M.F. and Khirotdin R.P.K. (2016). GIS-based integrated evaluation of environmentally sensitive areas (ESAs) for land use planning in Langkawi, Malaysia. Ecol Indic., 61: 293–308.

Lillesand T.M., Kiefer R.W. and Chipman J.W. (2014). Remote sensing and image interpretation, 7thedn. Wiley Publishers, Newyork.

Liu J., Gao J. and Ma S. (2015). Comprehensive evaluation of eco-environmental sensitivity in Inner Mongolia, China. China Environ Sci., 35: 591–598.

Misra A.K., Lata K. and Shukla J.B. (2014). Effects of population and population pressure on forest resources and their conservation: a modeling study. Environ Dev Sustain., 16: 361–374.

MOEF (2000). Report of the Committee on Identifying Parameters for Designating Ecologically Sensitive Areas in India (Pronab Sen Committee Report). The Ministry of Environment, Forestsa and Climate Change, Government of India, New Delhi.

Mote S., Rivas J. and Kalnay E. (2020). A novel approach to carrying capacity: from a priori prescription to a posteriori derivation based on underlying mechanisms and dynamics. Annu Rev Earth Planet Sci., 48: 657–683.

Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A. and Kent J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403: 853–858.

Nakhawa A., Priyanka V.S.and Markad S. (2017). Mangrove mapping of different estuaries along Ratnagiri block using remote sensing. Ecol Environ Conserv., 23: 819–824.

Nayak B.P., Kohli P. and Sharma J.V. (2012). Livelihood of local communities and forest degradation in India: Issues for REDD+. Minist Environ For Gov India New Delhi India Web http//envfor nic in/assets/redd-bk3 pdf Accessed 18 October 2021.

Nayak R., Karanth K.K., Dutta T., Karanth K.U. and Vaidyanathan S. (2020). Bits and pieces: Forest fragmentation by linear intrusions in India. Land use policy, 99: 104619.

Olson D.M., Dinerstein E. and Wikramanayake E.D. (2001). Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience, 51: 933–938.

Otukei J.R. and Blaschke T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int J Appl Earth Obs Geoinf., 12: S27--S31.

Pascal J.P. (1986). Explanatory Booklet on Forest Map of South India. Explan Bookl For Map South India Belgaum-Dharwar-Panaji, Shimoga, Mercara-Mysore 19–30, https://www.ifpindia.org/bookstore/hs18/.

Peters D.P.C., Yao J., Sala O.E. and Anderson J.P. (2012). Directional climate change and potential reversal of desertification in arid and semiarid ecosystems. Glob Chang Biol., 18: 151–163.

Ramachandra T.V., Bharath S. and Vinay S. (2019a). Visualisation of impacts due to the proposed developmental projects in the ecologically fragile regions- Kodagu district, Karnataka. Prog Disaster Sci., 3: 100038. https://doi.org/10.1016/j.pdisas.2019.100038.

Ramachandra T.V., Bharath S. and Vinay S. (2019b). Grid Based Monitoring of Natural Resources in the Ecologically Fragile Regions of Kodagu, Karnataka, ENVIS Technical Report 156, Sahyadri Conservation Series 83. Indian Institute of Science. Bangalore, Pp 152.

Ramachandra T.V., Bharath S. and Vinay S. (2021). Landslides in Western Ghats & Coastal area-Causes, Triggers, and Solutions. Bull Dep For Environ Ecol Gov Karnataka, 25–45.

Ramachandra T.V., Raj R. and Bharath H.A. (2019c). Valuation of Aghanashini estuarine ecosystem goods and services. J. Biodivers., 10: 45–58.

Ramachandra T.V., Rishab J., Krishnadas G. and Bharath S. (2016a). Hotspots of Solar Potential in India. In: LAKE 2016: Conference on Conservation and Sustainable Management of Ecologically Sensitive Regions in Western Ghats. EWRG, CES, IISc, Bangalore, Moodabidri, Karnataka, India.

Ramachandra T.V. and Bharath S. (2021). Carbon Footprint of Karnataka: Accounting of Sources and Sinks. In: Carbon Footprint Case Studies. Springer, pp 53–92.

Ramachandra T.V. and Bharath S. (2019a). Carbon Sequestration Potential of the Forest Ecosystems in the Western Ghats, a Global Biodiversity Hotspot. Nat Resour Res., 29: 2753–2771. https://doi.org/10.1007/s11053-019-09588-0.

Ramachandra T.V. and Bharath S. (2019b). Global Warming Mitigation Through Carbon Sequestrations in the Central Western Ghats. Remote Sens Earth Syst Sci., 2: 39–63. https://doi.org/10.1007/s41976-019-0010-z.

Ramachandra T.V., Bharath S. and Bharath H.A. (2020a). Insights of Forest Dynamics for the Regional Ecological Fragility Assessment. J Indian Soc Remote Sens., 48: 1169–1189. https://doi.org/10.1007/s12524-020-01146-z.

Ramachandra T.V., Bharath S., Chandran M.D.S. and Joshi N.V. (2018a). Salient Ecological Sensitive Regions of Central Western Ghats, India. Earth Syst Environ., 2: 15–34.

Ramachandra T.V., Bharath S. and Chandran M.D.S. (2016b). Geospatial analysis of forest fragmentation in Uttara Kannada District, India. For Ecosyst., 3: 10. https://doi.org/10.1186/s40663-016-0069-4.

Ramachandra T.V., Bharath S. and Gupta N. (2018b). Modelling landscape dynamics with LST in protected areas of Western Ghats, Karnataka. J. Environ. Manage., 206: 1253-1262. doi: 10.1016/j.jenvman.2017.08.001.

Ramachandra T.V., Bharath S., Rajan K.S. and Chandran M.D.S. (2017a). Modelling the forest transition in Central Western Ghats, India. Spat Inf Res., 25: 117–130. https://doi.org/10.1007/s41324-017-0084-8.

Ramachandra T.V., Bharath S., Rajan K.S. and Chandran M.D.S. (2016c). Stimulus of developmental projects to landscape dynamics in Uttara Kannada, Central Western Ghats. Egypt J Remote Sens Sp Sci., 19:. https://doi.org/10.1016/j.ejrs.2016.09.001.

Ramachandra T.V., Bharath S. and Vinay S. (2018c). Ecological Sustainability of Riverine Ecosystems in Central Western Ghats. J Biodivers., 9: 25–42.

Ramachandra T.V., Hegde G., Setturu B. and Krishnadas G. (2014). Bioenergy: A sustainable energy option for rural India. Adv For Lett., 3: 1–15.

Ramachandra T.V., Vinay S., Bharath S. and Bharath H.A. (2020b). Insights into riverscape dynamics with the hydrological, ecological and social dimensions for water sustenance. Curr Sci., 118: 1379–1393.

Ramachandra T.V. and Bharath S. (2019c). Sustainable Management of Bannerghatta National Park, India, with the Insights in Land Cover Dynamics. FIIB Bus Rev., 8: 118–131. https://doi.org/10.1177/2319714519828462.

Ramachandra T.V. and Bharath S. (2018). Geoinformatics based Valuation of Forest Landscape Dynamics in Central Western Ghats, India. J Remote Sens GIS, 07: 1–8. https://doi.org/10.4172/2469-4134.1000227.

Ramachandra T.V, Tara N.M. and Bharath S. (2017b). Web based spatial decision support system for sustenance of western ghats biodiversity, ecology and hydrology. Creat Congition Art Des Ed by Aneesha Sharma Jamuna Rajeswaran 58–70.

Riitters K.H., Wickham J.D., O’neill R.V., Jones K.B. and Smith E.R. (2002). Fragmentation of continental United States forests. Ecosystems, 5: 815–822.

Termorshuizen J.W. and Opdam P. (2009). Landscape services as a bridge between landscape ecology and sustainable development. Landsc Ecol., 24: 1037–1052.

United Nations (2015). Transforming our world: The 2030 agenda for sustainable development. New York United Nations, Dep Econ Soc Aff.

Downloads

Download data is not yet available.

Published

2023-11-01

How to Cite

Ramachandra, T. V., Setturu, B., Vinay, S., Subash Chandran, M. D., & Bharath Aithal, H. (2023). Ecologically Sensitive Regions in the Western Ghats, a Biodiversity Hotspot. Indian Forester, 149(11), 1105–1121. https://doi.org/10.36808/if/2023/v149i11/169382

Most read articles by the same author(s)

Loading...